opentofu/terraform/eval_state.go
James Bardin 15ea04af8a remove modules from state
Remove the module entry from the state if a module is no longer in the
configuration. Modules are not removed if there are any existing
resources with the module path as a prefix. The only time this should be
the case is if a module was removed in the config, but the apply didn't
target that module.

Create a NodeModuleRemoved and an associated EvalDeleteModule to track
the module in the graph then remove it from the state. The
NodeModuleRemoved dependencies are simply any other node which contains
the module path as a prefix in its path.

This could have probably been done much easier as a step in pruning the
state, but modules are going to have to be promoted to full graph nodes
anyway in order to support count.
2017-11-08 19:11:53 -05:00

296 lines
7.5 KiB
Go

package terraform
import (
"fmt"
)
// EvalReadState is an EvalNode implementation that reads the
// primary InstanceState for a specific resource out of the state.
type EvalReadState struct {
Name string
Output **InstanceState
}
func (n *EvalReadState) Eval(ctx EvalContext) (interface{}, error) {
return readInstanceFromState(ctx, n.Name, n.Output, func(rs *ResourceState) (*InstanceState, error) {
return rs.Primary, nil
})
}
// EvalReadStateDeposed is an EvalNode implementation that reads the
// deposed InstanceState for a specific resource out of the state
type EvalReadStateDeposed struct {
Name string
Output **InstanceState
// Index indicates which instance in the Deposed list to target, or -1 for
// the last item.
Index int
}
func (n *EvalReadStateDeposed) Eval(ctx EvalContext) (interface{}, error) {
return readInstanceFromState(ctx, n.Name, n.Output, func(rs *ResourceState) (*InstanceState, error) {
// Get the index. If it is negative, then we get the last one
idx := n.Index
if idx < 0 {
idx = len(rs.Deposed) - 1
}
if idx >= 0 && idx < len(rs.Deposed) {
return rs.Deposed[idx], nil
} else {
return nil, fmt.Errorf("bad deposed index: %d, for resource: %#v", idx, rs)
}
})
}
// Does the bulk of the work for the various flavors of ReadState eval nodes.
// Each node just provides a reader function to get from the ResourceState to the
// InstanceState, and this takes care of all the plumbing.
func readInstanceFromState(
ctx EvalContext,
resourceName string,
output **InstanceState,
readerFn func(*ResourceState) (*InstanceState, error),
) (*InstanceState, error) {
state, lock := ctx.State()
// Get a read lock so we can access this instance
lock.RLock()
defer lock.RUnlock()
// Look for the module state. If we don't have one, then it doesn't matter.
mod := state.ModuleByPath(ctx.Path())
if mod == nil {
return nil, nil
}
// Look for the resource state. If we don't have one, then it is okay.
rs := mod.Resources[resourceName]
if rs == nil {
return nil, nil
}
// Use the delegate function to get the instance state from the resource state
is, err := readerFn(rs)
if err != nil {
return nil, err
}
// Write the result to the output pointer
if output != nil {
*output = is
}
return is, nil
}
// EvalRequireState is an EvalNode implementation that early exits
// if the state doesn't have an ID.
type EvalRequireState struct {
State **InstanceState
}
func (n *EvalRequireState) Eval(ctx EvalContext) (interface{}, error) {
if n.State == nil {
return nil, EvalEarlyExitError{}
}
state := *n.State
if state == nil || state.ID == "" {
return nil, EvalEarlyExitError{}
}
return nil, nil
}
// EvalUpdateStateHook is an EvalNode implementation that calls the
// PostStateUpdate hook with the current state.
type EvalUpdateStateHook struct{}
func (n *EvalUpdateStateHook) Eval(ctx EvalContext) (interface{}, error) {
state, lock := ctx.State()
// Get a full lock. Even calling something like WriteState can modify
// (prune) the state, so we need the full lock.
lock.Lock()
defer lock.Unlock()
// Call the hook
err := ctx.Hook(func(h Hook) (HookAction, error) {
return h.PostStateUpdate(state)
})
if err != nil {
return nil, err
}
return nil, nil
}
// EvalWriteState is an EvalNode implementation that writes the
// primary InstanceState for a specific resource into the state.
type EvalWriteState struct {
Name string
ResourceType string
Provider string
Dependencies []string
State **InstanceState
}
func (n *EvalWriteState) Eval(ctx EvalContext) (interface{}, error) {
return writeInstanceToState(ctx, n.Name, n.ResourceType, n.Provider, n.Dependencies,
func(rs *ResourceState) error {
rs.Primary = *n.State
return nil
},
)
}
// EvalWriteStateDeposed is an EvalNode implementation that writes
// an InstanceState out to the Deposed list of a resource in the state.
type EvalWriteStateDeposed struct {
Name string
ResourceType string
Provider string
Dependencies []string
State **InstanceState
// Index indicates which instance in the Deposed list to target, or -1 to append.
Index int
}
func (n *EvalWriteStateDeposed) Eval(ctx EvalContext) (interface{}, error) {
return writeInstanceToState(ctx, n.Name, n.ResourceType, n.Provider, n.Dependencies,
func(rs *ResourceState) error {
if n.Index == -1 {
rs.Deposed = append(rs.Deposed, *n.State)
} else {
rs.Deposed[n.Index] = *n.State
}
return nil
},
)
}
// Pulls together the common tasks of the EvalWriteState nodes. All the args
// are passed directly down from the EvalNode along with a `writer` function
// which is yielded the *ResourceState and is responsible for writing an
// InstanceState to the proper field in the ResourceState.
func writeInstanceToState(
ctx EvalContext,
resourceName string,
resourceType string,
provider string,
dependencies []string,
writerFn func(*ResourceState) error,
) (*InstanceState, error) {
state, lock := ctx.State()
if state == nil {
return nil, fmt.Errorf("cannot write state to nil state")
}
// Get a write lock so we can access this instance
lock.Lock()
defer lock.Unlock()
// Look for the module state. If we don't have one, create it.
mod := state.ModuleByPath(ctx.Path())
if mod == nil {
mod = state.AddModule(ctx.Path())
}
// Look for the resource state.
rs := mod.Resources[resourceName]
if rs == nil {
rs = &ResourceState{}
rs.init()
mod.Resources[resourceName] = rs
}
rs.Type = resourceType
rs.Dependencies = dependencies
rs.Provider = provider
if err := writerFn(rs); err != nil {
return nil, err
}
return nil, nil
}
// EvalDeposeState is an EvalNode implementation that takes the primary
// out of a state and makes it Deposed. This is done at the beginning of
// create-before-destroy calls so that the create can create while preserving
// the old state of the to-be-destroyed resource.
type EvalDeposeState struct {
Name string
}
// TODO: test
func (n *EvalDeposeState) Eval(ctx EvalContext) (interface{}, error) {
state, lock := ctx.State()
// Get a read lock so we can access this instance
lock.RLock()
defer lock.RUnlock()
// Look for the module state. If we don't have one, then it doesn't matter.
mod := state.ModuleByPath(ctx.Path())
if mod == nil {
return nil, nil
}
// Look for the resource state. If we don't have one, then it is okay.
rs := mod.Resources[n.Name]
if rs == nil {
return nil, nil
}
// If we don't have a primary, we have nothing to depose
if rs.Primary == nil {
return nil, nil
}
// Depose
rs.Deposed = append(rs.Deposed, rs.Primary)
rs.Primary = nil
return nil, nil
}
// EvalUndeposeState is an EvalNode implementation that reads the
// InstanceState for a specific resource out of the state.
type EvalUndeposeState struct {
Name string
State **InstanceState
}
// TODO: test
func (n *EvalUndeposeState) Eval(ctx EvalContext) (interface{}, error) {
state, lock := ctx.State()
// Get a read lock so we can access this instance
lock.RLock()
defer lock.RUnlock()
// Look for the module state. If we don't have one, then it doesn't matter.
mod := state.ModuleByPath(ctx.Path())
if mod == nil {
return nil, nil
}
// Look for the resource state. If we don't have one, then it is okay.
rs := mod.Resources[n.Name]
if rs == nil {
return nil, nil
}
// If we don't have any desposed resource, then we don't have anything to do
if len(rs.Deposed) == 0 {
return nil, nil
}
// Undepose
idx := len(rs.Deposed) - 1
rs.Primary = rs.Deposed[idx]
rs.Deposed[idx] = *n.State
return nil, nil
}