opentofu/terraform/evaluate.go
Martin Atkins 9af67806fc core: Prune placeholder objects from state after refresh
Prior to our refactoring here, we were relying on a lucky coincidence for
correct behavior of the plan walk following a refresh in the same run:

- The refresh phase created placeholder objects in the state to represent
  any resource instance pending creation, to allow the interpolator to
  read attributes from them when evaluating "provider" and "data" blocks.
  In effect, the refresh walk is creating a partial plan that only covers
  creation actions, but was immediately discarding the actual diff entries
  and storing only the planned new state.

- It happened that objects pending creation showed up in state with an
  empty ID value, since that only gets assigned by the provider during
  apply.

- The Refresh function concluded by calling terraform.State.Prune, which
  deletes from the state any objects that have an empty ID value, which
  therefore prevented these temporary objects from surviving into the
  plan phase.

After refactoring, we no longer have this special ID field on instance
object state, and we instead rely on the Status field for tracking such
things. We also no longer have an explicit "prune" step on state, since
the state mutation methods themselves keep the structure pruned.

To address this, here we introduce a new instance object status "planned",
which is equivalent to having an empty ID value in the old world. We also
introduce a new method on states.SyncState that deletes from the state
any planned objects, which therefore replaces that portion of the old
State.prune operation just for this refresh use-case.

Finally, we are now expecting the expression evaluator to pull pending
objects from the planned changeset rather than from the state directly,
and so for correct results these placeholder resource creation changes
must also be reported in a throwaway changeset during the refresh walk.

The addition of states.ObjectPlanned also permits a previously-missing
safety check in the expression evaluator to prevent us from relying on the
incomplete value stored in state for a pending object, in the event that
some bug prevents the real pending object from being written into the
planned changeset.
2018-10-16 19:14:11 -07:00

844 lines
30 KiB
Go

package terraform
import (
"fmt"
"log"
"os"
"strconv"
"sync"
"github.com/agext/levenshtein"
"github.com/hashicorp/hcl2/hcl"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/configs/configschema"
"github.com/hashicorp/terraform/lang"
"github.com/hashicorp/terraform/plans"
"github.com/hashicorp/terraform/states"
"github.com/hashicorp/terraform/tfdiags"
)
// Evaluator provides the necessary contextual data for evaluating expressions
// for a particular walk operation.
type Evaluator struct {
// Operation defines what type of operation this evaluator is being used
// for.
Operation walkOperation
// Meta is contextual metadata about the current operation.
Meta *ContextMeta
// Config is the root node in the configuration tree.
Config *configs.Config
// VariableValues is a map from variable names to their associated values,
// within the module indicated by ModulePath. VariableValues is modified
// concurrently, and so it must be accessed only while holding
// VariableValuesLock.
//
// The first map level is string representations of addr.ModuleInstance
// values, while the second level is variable names.
VariableValues map[string]map[string]cty.Value
VariableValuesLock *sync.Mutex
// Schemas is a repository of all of the schemas we should need to
// evaluate expressions. This must be constructed by the caller to
// include schemas for all of the providers, resource types, data sources
// and provisioners used by the given configuration and state.
//
// This must not be mutated during evaluation.
Schemas *Schemas
// State is the current state, embedded in a wrapper that ensures that
// it can be safely accessed and modified concurrently.
State *states.SyncState
// Changes is the set of proposed changes, embedded in a wrapper that
// ensures they can be safely accessed and modified concurrently.
Changes *plans.ChangesSync
}
// Scope creates an evaluation scope for the given module path and optional
// resource.
//
// If the "self" argument is nil then the "self" object is not available
// in evaluated expressions. Otherwise, it behaves as an alias for the given
// address.
func (e *Evaluator) Scope(data lang.Data, self addrs.Referenceable) *lang.Scope {
return &lang.Scope{
Data: data,
SelfAddr: self,
PureOnly: e.Operation != walkApply && e.Operation != walkDestroy,
BaseDir: ".", // Always current working directory for now.
}
}
// evaluationStateData is an implementation of lang.Data that resolves
// references primarily (but not exclusively) using information from a State.
type evaluationStateData struct {
Evaluator *Evaluator
// ModulePath is the path through the dynamic module tree to the module
// that references will be resolved relative to.
ModulePath addrs.ModuleInstance
// InstanceKeyData describes the values, if any, that are accessible due
// to repetition of a containing object using "count" or "for_each"
// arguments. (It is _not_ used for the for_each inside "dynamic" blocks,
// since the user specifies in that case which variable name to locally
// shadow.)
InstanceKeyData InstanceKeyEvalData
}
// InstanceKeyEvalData is used during evaluation to specify which values,
// if any, should be produced for count.index, each.key, and each.value.
type InstanceKeyEvalData struct {
// CountIndex is the value for count.index, or cty.NilVal if evaluating
// in a context where the "count" argument is not active.
//
// For correct operation, this should always be of type cty.Number if not
// nil.
CountIndex cty.Value
// EachKey and EachValue are the values for each.key and each.value
// respectively, or cty.NilVal if evaluating in a context where the
// "for_each" argument is not active. These must either both be set
// or neither set.
//
// For correct operation, EachKey must always be either of type cty.String
// or cty.Number if not nil.
EachKey, EachValue cty.Value
}
// EvalDataForInstanceKey constructs a suitable InstanceKeyEvalData for
// evaluating in a context that has the given instance key.
func EvalDataForInstanceKey(key addrs.InstanceKey) InstanceKeyEvalData {
// At the moment we don't actually implement for_each, so we only
// ever populate CountIndex.
// (When we implement for_each later we may need to reorganize this some,
// so that we can resolve the ambiguity that an int key may either be
// a count.index or an each.key where for_each is over a list.)
var countIdx cty.Value
if intKey, ok := key.(addrs.IntKey); ok {
countIdx = cty.NumberIntVal(int64(intKey))
}
return InstanceKeyEvalData{
CountIndex: countIdx,
}
}
// EvalDataForNoInstanceKey is a value of InstanceKeyData that sets no instance
// key values at all, suitable for use in contexts where no keyed instance
// is relevant.
var EvalDataForNoInstanceKey = InstanceKeyEvalData{}
// evaluationStateData must implement lang.Data
var _ lang.Data = (*evaluationStateData)(nil)
func (d *evaluationStateData) GetCountAttr(addr addrs.CountAttr, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
switch addr.Name {
case "index":
idxVal := d.InstanceKeyData.CountIndex
if idxVal == cty.NilVal {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Reference to "count" in non-counted context`,
Detail: fmt.Sprintf(`The "count" object can be used only in "resource" and "data" blocks, and only when the "count" argument is set.`),
Subject: rng.ToHCL().Ptr(),
})
return cty.UnknownVal(cty.Number), diags
}
return idxVal, diags
default:
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Invalid "count" attribute`,
Detail: fmt.Sprintf(`The "count" object does not have an attribute named %q. The only supported attribute is count.index, which is the index of each instance of a resource block that has the "count" argument set.`, addr.Name),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
}
func (d *evaluationStateData) GetInputVariable(addr addrs.InputVariable, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
// First we'll make sure the requested value is declared in configuration,
// so we can produce a nice message if not.
moduleConfig := d.Evaluator.Config.DescendentForInstance(d.ModulePath)
if moduleConfig == nil {
// should never happen, since we can't be evaluating in a module
// that wasn't mentioned in configuration.
panic(fmt.Sprintf("input variable read from %s, which has no configuration", d.ModulePath))
}
config := moduleConfig.Module.Variables[addr.Name]
if config == nil {
var suggestions []string
for k := range moduleConfig.Module.Variables {
suggestions = append(suggestions, k)
}
suggestion := nameSuggestion(addr.Name, suggestions)
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
} else {
suggestion = fmt.Sprintf(" This variable can be declared with a variable %q {} block.", addr.Name)
}
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Reference to undeclared input variable`,
Detail: fmt.Sprintf(`An input variable with the name %q has not been declared.%s`, addr.Name, suggestion),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
wantType := cty.DynamicPseudoType
if config.Type != cty.NilType {
wantType = config.Type
}
d.Evaluator.VariableValuesLock.Lock()
defer d.Evaluator.VariableValuesLock.Unlock()
moduleAddrStr := d.ModulePath.String()
vals := d.Evaluator.VariableValues[moduleAddrStr]
if vals == nil {
return cty.UnknownVal(wantType), diags
}
val, isSet := vals[addr.Name]
if !isSet {
if config.Default != cty.NilVal {
return config.Default, diags
}
return cty.UnknownVal(wantType), diags
}
var err error
val, err = convert.Convert(val, wantType)
if err != nil {
// We should never get here because this problem should've been caught
// during earlier validation, but we'll do something reasonable anyway.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Incorrect variable type`,
Detail: fmt.Sprintf(`The resolved value of variable %q is not appropriate: %s.`, addr.Name, err),
Subject: &config.DeclRange,
})
// Stub out our return value so that the semantic checker doesn't
// produce redundant downstream errors.
val = cty.UnknownVal(wantType)
}
return val, diags
}
func (d *evaluationStateData) GetLocalValue(addr addrs.LocalValue, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
// First we'll make sure the requested value is declared in configuration,
// so we can produce a nice message if not.
moduleConfig := d.Evaluator.Config.DescendentForInstance(d.ModulePath)
if moduleConfig == nil {
// should never happen, since we can't be evaluating in a module
// that wasn't mentioned in configuration.
panic(fmt.Sprintf("local value read from %s, which has no configuration", d.ModulePath))
}
config := moduleConfig.Module.Locals[addr.Name]
if config == nil {
var suggestions []string
for k := range moduleConfig.Module.Locals {
suggestions = append(suggestions, k)
}
suggestion := nameSuggestion(addr.Name, suggestions)
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
}
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Reference to undeclared local value`,
Detail: fmt.Sprintf(`A local value with the name %q has not been declared.%s`, addr.Name, suggestion),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
val := d.Evaluator.State.LocalValue(addr.Absolute(d.ModulePath))
if val == cty.NilVal {
// Not evaluated yet?
val = cty.DynamicVal
}
return val, diags
}
func (d *evaluationStateData) GetModuleInstance(addr addrs.ModuleCallInstance, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
// Output results live in the module that declares them, which is one of
// the child module instances of our current module path.
moduleAddr := addr.ModuleInstance(d.ModulePath)
// We'll consult the configuration to see what output names we are
// expecting, so we can ensure the resulting object is of the expected
// type even if our data is incomplete for some reason.
moduleConfig := d.Evaluator.Config.DescendentForInstance(moduleAddr)
if moduleConfig == nil {
// should never happen, since we can't be evaluating in a module
// that wasn't mentioned in configuration.
panic(fmt.Sprintf("output value read from %s, which has no configuration", moduleAddr))
}
outputConfigs := moduleConfig.Module.Outputs
vals := map[string]cty.Value{}
for n := range outputConfigs {
addr := addrs.OutputValue{Name: n}.Absolute(moduleAddr)
os := d.Evaluator.State.OutputValue(addr)
if os == nil {
// Not evaluated yet?
vals[n] = cty.DynamicVal
continue
}
vals[n] = os.Value
}
return cty.ObjectVal(vals), diags
}
func (d *evaluationStateData) GetModuleInstanceOutput(addr addrs.ModuleCallOutput, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
// Output results live in the module that declares them, which is one of
// the child module instances of our current module path.
absAddr := addr.AbsOutputValue(d.ModulePath)
moduleAddr := absAddr.Module
// First we'll consult the configuration to see if an output of this
// name is declared at all.
moduleConfig := d.Evaluator.Config.DescendentForInstance(moduleAddr)
if moduleConfig == nil {
// should never happen, since we can't be evaluating in a module
// that wasn't mentioned in configuration.
panic(fmt.Sprintf("output value read from %s, which has no configuration", moduleAddr))
}
config := moduleConfig.Module.Outputs[addr.Name]
if config == nil {
var suggestions []string
for k := range moduleConfig.Module.Outputs {
suggestions = append(suggestions, k)
}
suggestion := nameSuggestion(addr.Name, suggestions)
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
}
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Reference to undeclared output value`,
Detail: fmt.Sprintf(`An output value with the name %q has not been declared in %s.%s`, addr.Name, moduleAddr, suggestion),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
os := d.Evaluator.State.OutputValue(absAddr)
if os == nil {
// Not evaluated yet?
return cty.DynamicVal, diags
}
return os.Value, diags
}
func (d *evaluationStateData) GetPathAttr(addr addrs.PathAttr, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
switch addr.Name {
case "cwd":
wd, err := os.Getwd()
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Failed to get working directory`,
Detail: fmt.Sprintf(`The value for path.cwd cannot be determined due to a system error: %s`, err),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
return cty.StringVal(wd), diags
case "module":
moduleConfig := d.Evaluator.Config.DescendentForInstance(d.ModulePath)
if moduleConfig == nil {
// should never happen, since we can't be evaluating in a module
// that wasn't mentioned in configuration.
panic(fmt.Sprintf("module.path read from module %s, which has no configuration", d.ModulePath))
}
sourceDir := moduleConfig.Module.SourceDir
return cty.StringVal(sourceDir), diags
case "root":
sourceDir := d.Evaluator.Config.Module.SourceDir
return cty.StringVal(sourceDir), diags
default:
suggestion := nameSuggestion(addr.Name, []string{"cwd", "module", "root"})
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
}
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Invalid "path" attribute`,
Detail: fmt.Sprintf(`The "path" object does not have an attribute named %q.%s`, addr.Name, suggestion),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
}
func (d *evaluationStateData) GetResourceInstance(addr addrs.ResourceInstance, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
// Although we are giving a ResourceInstance address here, if it has
// a key of addrs.NoKey then it might actually be a request for all of
// the instances of a particular resource. The reference resolver can't
// resolve the ambiguity itself, so we must do it in here.
// First we'll consult the configuration to see if an resource of this
// name is declared at all.
moduleAddr := d.ModulePath
moduleConfig := d.Evaluator.Config.DescendentForInstance(moduleAddr)
if moduleConfig == nil {
// should never happen, since we can't be evaluating in a module
// that wasn't mentioned in configuration.
panic(fmt.Sprintf("resource value read from %s, which has no configuration", moduleAddr))
}
config := moduleConfig.Module.ResourceByAddr(addr.ContainingResource())
if config == nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Reference to undeclared resource`,
Detail: fmt.Sprintf(`A resource %q %q has not been declared in %s`, addr.Resource.Type, addr.Resource.Name, moduleAddr),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
// First we'll find the state for the resource as a whole, and decide
// from there whether we're going to interpret the given address as a
// resource or a resource instance address.
rs := d.Evaluator.State.Resource(addr.ContainingResource().Absolute(d.ModulePath))
if rs == nil {
schema := d.getResourceSchema(addr.ContainingResource(), config.ProviderConfigAddr().Absolute(d.ModulePath))
// If it doesn't exist at all then we can't reliably determine whether
// single-instance or whole-resource interpretation was intended, but
// we can decide this partially...
if addr.Key != addrs.NoKey {
// If there's an instance key then the user must be intending
// single-instance interpretation, and so we can return a
// properly-typed unknown value to help with type checking.
return cty.UnknownVal(schema.ImpliedType()), diags
}
// otherwise we must return DynamicVal so that both interpretations
// can proceed without generating errors, and we'll deal with this
// in a later step where more information is gathered.
// (In practice we should only end up here during the validate walk,
// since later walks should have at least partial states populated
// for all resources in the configuration.)
return cty.DynamicVal, diags
}
schema := d.getResourceSchema(addr.ContainingResource(), rs.ProviderConfig)
// If we are able to automatically convert to the "right" type of instance
// key for this each mode then we'll do so, to match with how we generally
// treat values elsewhere in the language. This allows code below to
// assume that any possible conversions have already been dealt with and
// just worry about validation.
key := d.coerceInstanceKey(addr.Key, rs.EachMode)
multi := false
switch rs.EachMode {
case states.NoEach:
if key != addrs.NoKey {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource index",
Detail: fmt.Sprintf("Resource %s does not have either \"count\" or \"for_each\" set, so it cannot be indexed.", addr.ContainingResource()),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
case states.EachList:
multi = key == addrs.NoKey
if _, ok := addr.Key.(addrs.IntKey); !multi && !ok {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource index",
Detail: fmt.Sprintf("Resource %s must be indexed with a number value.", addr.ContainingResource()),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
case states.EachMap:
multi = key == addrs.NoKey
if _, ok := addr.Key.(addrs.IntKey); !multi && !ok {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource index",
Detail: fmt.Sprintf("Resource %s must be indexed with a string value.", addr.ContainingResource()),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
}
if !multi {
log.Printf("[TRACE] GetResourceInstance: %s is a single instance", addr)
is := rs.Instance(key)
if is == nil {
return cty.UnknownVal(schema.ImpliedType()), diags
}
return d.getResourceInstanceSingle(addr, rng, is, config, rs.ProviderConfig)
}
log.Printf("[TRACE] GetResourceInstance: %s has multiple keyed instances", addr)
return d.getResourceInstancesAll(addr.ContainingResource(), rng, config, rs, rs.ProviderConfig)
}
func (d *evaluationStateData) getResourceInstanceSingle(addr addrs.ResourceInstance, rng tfdiags.SourceRange, is *states.ResourceInstance, config *configs.Resource, providerAddr addrs.AbsProviderConfig) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
schema := d.getResourceSchema(addr.ContainingResource(), providerAddr)
if schema == nil {
// This shouldn't happen, since validation before we get here should've
// taken care of it, but we'll show a reasonable error message anyway.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Missing resource type schema`,
Detail: fmt.Sprintf("No schema is available for %s in %s. This is a bug in Terraform and should be reported.", addr, providerAddr),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
ty := schema.ImpliedType()
if is == nil || is.Current == nil {
// Assume we're dealing with an instance that hasn't been created yet.
return cty.UnknownVal(ty), diags
}
// If there's a pending change for this instance in our plan, we'll prefer
// that. This is important because the state can't represent unknown values
// and so its data is inaccurate when changes are pending.
if change := d.Evaluator.Changes.GetResourceInstanceChange(addr.Absolute(d.ModulePath), states.CurrentGen); change != nil {
val, err := change.After.Decode(ty)
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource instance data in plan",
Detail: fmt.Sprintf("Instance %s data could not be decoded from the plan: %s.", addr.Absolute(d.ModulePath), err),
Subject: &config.DeclRange,
})
return cty.UnknownVal(ty), diags
}
return val, diags
}
if is.Current.Status == states.ObjectPlanned {
// If the object is in planned status then we should not
// get here, since we should've found a pending value
// in the plan above instead.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing pending object in plan",
Detail: fmt.Sprintf("Instance %s is marked as having a change pending but that change is not recorded in the plan. This is a bug in Terraform; please report it.", addr),
Subject: &config.DeclRange,
})
return cty.UnknownVal(ty), diags
}
ios, err := is.Current.Decode(ty)
if err != nil {
// This shouldn't happen, since by the time we get here
// we should've upgraded the state data already.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource instance data in state",
Detail: fmt.Sprintf("Instance %s data could not be decoded from the state: %s.", addr.Absolute(d.ModulePath), err),
Subject: &config.DeclRange,
})
return cty.UnknownVal(ty), diags
}
return ios.Value, diags
}
func (d *evaluationStateData) getResourceInstancesAll(addr addrs.Resource, rng tfdiags.SourceRange, config *configs.Resource, rs *states.Resource, providerAddr addrs.AbsProviderConfig) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
schema := d.getResourceSchema(addr, providerAddr)
if schema == nil {
// This shouldn't happen, since validation before we get here should've
// taken care of it, but we'll show a reasonable error message anyway.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Missing resource type schema`,
Detail: fmt.Sprintf("No schema is available for %s in %s. This is a bug in Terraform and should be reported.", addr, providerAddr),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
switch rs.EachMode {
case states.EachList:
// We need to infer the length of our resulting tuple by searching
// for the max IntKey in our instances map.
length := 0
for k := range rs.Instances {
if ik, ok := k.(addrs.IntKey); ok {
if int(ik) >= length {
length = int(ik) + 1
}
}
}
vals := make([]cty.Value, length)
for i := 0; i < length; i++ {
ty := schema.ImpliedType()
key := addrs.IntKey(i)
is, exists := rs.Instances[key]
if exists {
instAddr := addr.Instance(key).Absolute(d.ModulePath)
// Prefer pending value in plan if present. See getResourceInstanceSingle
// comment for the rationale.
if change := d.Evaluator.Changes.GetResourceInstanceChange(instAddr, states.CurrentGen); change != nil {
val, err := change.After.Decode(ty)
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource instance data in plan",
Detail: fmt.Sprintf("Instance %s data could not be decoded from the plan: %s.", instAddr, err),
Subject: &config.DeclRange,
})
continue
}
vals[i] = val
continue
}
if is.Current.Status == states.ObjectPlanned {
// If the object is in planned status then we should not
// get here, since we should've found a pending value
// in the plan above instead.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing pending object in plan",
Detail: fmt.Sprintf("Instance %s is marked as having a change pending but that change is not recorded in the plan. This is a bug in Terraform; please report it.", instAddr),
Subject: &config.DeclRange,
})
continue
}
ios, err := is.Current.Decode(ty)
if err != nil {
// This shouldn't happen, since by the time we get here
// we should've upgraded the state data already.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource instance data in state",
Detail: fmt.Sprintf("Instance %s data could not be decoded from the state: %s.", instAddr, err),
Subject: &config.DeclRange,
})
continue
}
vals[i] = ios.Value
} else {
// There shouldn't normally be "gaps" in our list but we'll
// allow it under the assumption that we're in a weird situation
// where e.g. someone has run "terraform state mv" to reorder
// a list and left a hole behind.
vals[i] = cty.UnknownVal(schema.ImpliedType())
}
}
// We use a tuple rather than a list here because resource schemas may
// include dynamically-typed attributes, which will then cause each
// instance to potentially have a different runtime type even though
// they all conform to the static schema.
return cty.TupleVal(vals), diags
case states.EachMap:
ty := schema.ImpliedType()
vals := make(map[string]cty.Value, len(rs.Instances))
for k, is := range rs.Instances {
if sk, ok := k.(addrs.StringKey); ok {
instAddr := addr.Instance(k).Absolute(d.ModulePath)
// Prefer pending value in plan if present. See getResourceInstanceSingle
// comment for the rationale.
if change := d.Evaluator.Changes.GetResourceInstanceChange(instAddr, states.CurrentGen); change != nil {
val, err := change.After.Decode(ty)
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource instance data in plan",
Detail: fmt.Sprintf("Instance %s data could not be decoded from the plan: %s.", instAddr, err),
Subject: &config.DeclRange,
})
continue
}
vals[string(sk)] = val
continue
}
ios, err := is.Current.Decode(ty)
if err != nil {
// This shouldn't happen, since by the time we get here
// we should've upgraded the state data already.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource instance data in state",
Detail: fmt.Sprintf("Instance %s data could not be decoded from the state: %s.", instAddr, err),
Subject: &config.DeclRange,
})
continue
}
vals[string(sk)] = ios.Value
}
}
// We use an object rather than a map here because resource schemas may
// include dynamically-typed attributes, which will then cause each
// instance to potentially have a different runtime type even though
// they all conform to the static schema.
return cty.ObjectVal(vals), diags
default:
// Should never happen since caller should deal with other modes
panic(fmt.Sprintf("unsupported EachMode %s", rs.EachMode))
}
}
func (d *evaluationStateData) getResourceSchema(addr addrs.Resource, providerAddr addrs.AbsProviderConfig) *configschema.Block {
providerType := providerAddr.ProviderConfig.Type
typeName := addr.Type
schemas := d.Evaluator.Schemas
switch addr.Mode {
case addrs.ManagedResourceMode:
return schemas.ResourceTypeConfig(providerType, typeName)
case addrs.DataResourceMode:
return schemas.DataSourceConfig(providerType, typeName)
default:
log.Printf("[WARN] Don't know how to fetch schema for resource %s", providerAddr)
return nil
}
}
// coerceInstanceKey attempts to convert the given key to the type expected
// for the given EachMode.
//
// If the key is already of the correct type or if it cannot be converted then
// it is returned verbatim. If conversion is required and possible, the
// converted value is returned. Callers should not try to determine if
// conversion was possible, should instead just check if the result is of
// the expected type.
func (d *evaluationStateData) coerceInstanceKey(key addrs.InstanceKey, mode states.EachMode) addrs.InstanceKey {
if key == addrs.NoKey {
// An absent key can't be converted
return key
}
switch mode {
case states.NoEach:
// No conversions possible at all
return key
case states.EachMap:
if intKey, isInt := key.(addrs.IntKey); isInt {
return addrs.StringKey(strconv.Itoa(int(intKey)))
}
return key
case states.EachList:
if strKey, isStr := key.(addrs.StringKey); isStr {
i, err := strconv.Atoi(string(strKey))
if err != nil {
return key
}
return addrs.IntKey(i)
}
return key
default:
return key
}
}
func (d *evaluationStateData) GetTerraformAttr(addr addrs.TerraformAttr, rng tfdiags.SourceRange) (cty.Value, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
switch addr.Name {
case "workspace":
workspaceName := d.Evaluator.Meta.Env
return cty.StringVal(workspaceName), diags
case "env":
// Prior to Terraform 0.12 there was an attribute "env", which was
// an alias name for "workspace". This was deprecated and is now
// removed.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Invalid "terraform" attribute`,
Detail: `The terraform.env attribute was deprecated in v0.10 and removed in v0.12. The "state environment" concept was rename to "workspace" in v0.12, and so the workspace name can now be accessed using the terraform.workspace attribute.`,
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
default:
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: `Invalid "terraform" attribute`,
Detail: fmt.Sprintf(`The "terraform" object does not have an attribute named %q. The only supported attribute is terraform.workspace, the name of the currently-selected workspace.`, addr.Name),
Subject: rng.ToHCL().Ptr(),
})
return cty.DynamicVal, diags
}
}
// nameSuggestion tries to find a name from the given slice of suggested names
// that is close to the given name and returns it if found. If no suggestion
// is close enough, returns the empty string.
//
// The suggestions are tried in order, so earlier suggestions take precedence
// if the given string is similar to two or more suggestions.
//
// This function is intended to be used with a relatively-small number of
// suggestions. It's not optimized for hundreds or thousands of them.
func nameSuggestion(given string, suggestions []string) string {
for _, suggestion := range suggestions {
dist := levenshtein.Distance(given, suggestion, nil)
if dist < 3 { // threshold determined experimentally
return suggestion
}
}
return ""
}