opentofu/internal/terraform/graph_builder_eval.go
Martin Atkins 37b1413ab3 core: Handle root and child module input variables consistently
Previously we had a significant discrepancy between these two situations:
we wrote the raw root module variables directly into the EvalContext and
then applied type conversions only at expression evaluation time, while
for child modules we converted and validated the values while visiting
the variable graph node and wrote only the _final_ value into the
EvalContext.

This confusion seems to have been the root cause for #29899, where
validation rules for root module variables were being applied at the wrong
point in the process, prior to type conversion.

To fix that bug and also make similar mistakes less likely in the future,
I've made the root module variable handling more like the child module
variable handling in the following ways:
 - The "raw value" (exactly as given by the user) lives only in the graph
   node representing the variable, which mirrors how the _expression_
   for a child module variable lives in its graph node. This means that
   the flow for the two is the same except that there's no expression
   evaluation step for root module variables, because they arrive as
   constant values from the caller.
 - The set of variable values in the EvalContext is always only "final"
   values, after type conversion is complete. That in turn means we no
   longer need to do "just in time" conversion in
   evaluationStateData.GetInputVariable, and can just return the value
   exactly as stored, which is consistent with how we handle all other
   references between objects.

This diff is noisier than I'd like because of how much it takes to wire
a new argument (the raw variable values) through to the plan graph builder,
but those changes are pretty mechanical and the interesting logic lives
inside the plan graph builder itself, in NodeRootVariable, and
the shared helper functions in eval_variable.go.

While here I also took the opportunity to fix a historical API wart in
EvalContext, where SetModuleCallArguments was built to take a set of
variable values all at once but our current caller always calls with only
one at a time. That is now just SetModuleCallArgument singular, to match
with the new SetRootModuleArgument to deal with root module variables.
2022-01-10 12:26:54 -08:00

107 lines
3.5 KiB
Go

package terraform
import (
"github.com/hashicorp/terraform/internal/addrs"
"github.com/hashicorp/terraform/internal/configs"
"github.com/hashicorp/terraform/internal/dag"
"github.com/hashicorp/terraform/internal/states"
"github.com/hashicorp/terraform/internal/tfdiags"
)
// EvalGraphBuilder implements GraphBuilder and constructs a graph suitable
// for evaluating in-memory values (input variables, local values, output
// values) in the state without any other side-effects.
//
// This graph is used only in weird cases, such as the "terraform console"
// CLI command, where we need to evaluate expressions against the state
// without taking any other actions.
//
// The generated graph will include nodes for providers, resources, etc
// just to allow indirect dependencies to be resolved, but these nodes will
// not take any actions themselves since we assume that their parts of the
// state, if any, are already complete.
//
// Although the providers are never configured, they must still be available
// in order to obtain schema information used for type checking, etc.
type EvalGraphBuilder struct {
// Config is the configuration tree.
Config *configs.Config
// State is the current state
State *states.State
// RootVariableValues are the raw input values for root input variables
// given by the caller, which we'll resolve into final values as part
// of the plan walk.
RootVariableValues InputValues
// Plugins is a library of plug-in components (providers and
// provisioners) available for use.
Plugins *contextPlugins
}
// See GraphBuilder
func (b *EvalGraphBuilder) Build(path addrs.ModuleInstance) (*Graph, tfdiags.Diagnostics) {
return (&BasicGraphBuilder{
Steps: b.Steps(),
Validate: true,
Name: "EvalGraphBuilder",
}).Build(path)
}
// See GraphBuilder
func (b *EvalGraphBuilder) Steps() []GraphTransformer {
concreteProvider := func(a *NodeAbstractProvider) dag.Vertex {
return &NodeEvalableProvider{
NodeAbstractProvider: a,
}
}
steps := []GraphTransformer{
// Creates all the data resources that aren't in the state. This will also
// add any orphans from scaling in as destroy nodes.
&ConfigTransformer{
Config: b.Config,
},
// Add dynamic values
&RootVariableTransformer{Config: b.Config, RawValues: b.RootVariableValues},
&ModuleVariableTransformer{Config: b.Config},
&LocalTransformer{Config: b.Config},
&OutputTransformer{Config: b.Config},
// Attach the configuration to any resources
&AttachResourceConfigTransformer{Config: b.Config},
// Attach the state
&AttachStateTransformer{State: b.State},
transformProviders(concreteProvider, b.Config),
// Must attach schemas before ReferenceTransformer so that we can
// analyze the configuration to find references.
&AttachSchemaTransformer{Plugins: b.Plugins, Config: b.Config},
// Create expansion nodes for all of the module calls. This must
// come after all other transformers that create nodes representing
// objects that can belong to modules.
&ModuleExpansionTransformer{Config: b.Config},
// Connect so that the references are ready for targeting. We'll
// have to connect again later for providers and so on.
&ReferenceTransformer{},
// Although we don't configure providers, we do still start them up
// to get their schemas, and so we must shut them down again here.
&CloseProviderTransformer{},
// Close root module
&CloseRootModuleTransformer{},
// Remove redundant edges to simplify the graph.
&TransitiveReductionTransformer{},
}
return steps
}