opentofu/internal/terraform/graph_builder_plan.go
Alisdair McDiarmid a103c65140 core: Eval pre/postconditions in refresh-only mode
Evaluate precondition and postcondition blocks in refresh-only mode, but
report any failures as warnings instead of errors. This ensures that any
deviation from the contract defined by condition blocks is reported as
early as possible, without preventing the completion of a state refresh
operation.

Prior to this commit, Terraform evaluated output preconditions and data
source pre/postconditions as normal in refresh-only mode, while managed
resource pre/postconditions were not evaluated at all. This omission
could lead to confusing partial condition errors, or failure to detect
undesired changes which would otherwise cause resources to become
invalid.

Reporting the failures as errors also meant that changes retrieved
during refresh could cause the refresh operation to fail. This is also
undesirable, as the primary purpose of the operation is to update local
state. Precondition/postcondition checks are still valuable here, but
should be informative rather than blocking.
2022-03-11 13:32:40 -05:00

203 lines
6.3 KiB
Go

package terraform
import (
"sync"
"github.com/hashicorp/terraform/internal/addrs"
"github.com/hashicorp/terraform/internal/configs"
"github.com/hashicorp/terraform/internal/dag"
"github.com/hashicorp/terraform/internal/states"
"github.com/hashicorp/terraform/internal/tfdiags"
)
// PlanGraphBuilder implements GraphBuilder and is responsible for building
// a graph for planning (creating a Terraform Diff).
//
// The primary difference between this graph and others:
//
// * Based on the config since it represents the target state
//
// * Ignores lifecycle options since no lifecycle events occur here. This
// simplifies the graph significantly since complex transforms such as
// create-before-destroy can be completely ignored.
//
type PlanGraphBuilder struct {
// Config is the configuration tree to build a plan from.
Config *configs.Config
// State is the current state
State *states.State
// RootVariableValues are the raw input values for root input variables
// given by the caller, which we'll resolve into final values as part
// of the plan walk.
RootVariableValues InputValues
// Plugins is a library of plug-in components (providers and
// provisioners) available for use.
Plugins *contextPlugins
// Targets are resources to target
Targets []addrs.Targetable
// ForceReplace are resource instances where if we would normally have
// generated a NoOp or Update action then we'll force generating a replace
// action instead. Create and Delete actions are not affected.
ForceReplace []addrs.AbsResourceInstance
// skipRefresh indicates that we should skip refreshing managed resources
skipRefresh bool
// skipPlanChanges indicates that we should skip the step of comparing
// prior state with configuration and generating planned changes to
// resource instances. (This is for the "refresh only" planning mode,
// where we _only_ do the refresh step.)
skipPlanChanges bool
// CustomConcrete can be set to customize the node types created
// for various parts of the plan. This is useful in order to customize
// the plan behavior.
CustomConcrete bool
ConcreteProvider ConcreteProviderNodeFunc
ConcreteResource ConcreteResourceNodeFunc
ConcreteResourceOrphan ConcreteResourceInstanceNodeFunc
ConcreteModule ConcreteModuleNodeFunc
once sync.Once
}
// See GraphBuilder
func (b *PlanGraphBuilder) Build(path addrs.ModuleInstance) (*Graph, tfdiags.Diagnostics) {
return (&BasicGraphBuilder{
Steps: b.Steps(),
Name: "PlanGraphBuilder",
}).Build(path)
}
// See GraphBuilder
func (b *PlanGraphBuilder) Steps() []GraphTransformer {
b.once.Do(b.init)
concreteResourceInstanceDeposed := func(a *NodeAbstractResourceInstance, key states.DeposedKey) dag.Vertex {
return &NodePlanDeposedResourceInstanceObject{
NodeAbstractResourceInstance: a,
DeposedKey: key,
skipRefresh: b.skipRefresh,
skipPlanChanges: b.skipPlanChanges,
}
}
steps := []GraphTransformer{
// Creates all the resources represented in the config
&ConfigTransformer{
Concrete: b.ConcreteResource,
Config: b.Config,
},
// Add dynamic values
&RootVariableTransformer{Config: b.Config, RawValues: b.RootVariableValues},
&ModuleVariableTransformer{Config: b.Config},
&LocalTransformer{Config: b.Config},
&OutputTransformer{Config: b.Config, RefreshOnly: b.skipPlanChanges},
// Add orphan resources
&OrphanResourceInstanceTransformer{
Concrete: b.ConcreteResourceOrphan,
State: b.State,
Config: b.Config,
},
// We also need nodes for any deposed instance objects present in the
// state, so we can plan to destroy them. (This intentionally
// skips creating nodes for _current_ objects, since ConfigTransformer
// created nodes that will do that during DynamicExpand.)
&StateTransformer{
ConcreteDeposed: concreteResourceInstanceDeposed,
State: b.State,
},
// Attach the state
&AttachStateTransformer{State: b.State},
// Create orphan output nodes
&OrphanOutputTransformer{Config: b.Config, State: b.State},
// Attach the configuration to any resources
&AttachResourceConfigTransformer{Config: b.Config},
// add providers
transformProviders(b.ConcreteProvider, b.Config),
// Remove modules no longer present in the config
&RemovedModuleTransformer{Config: b.Config, State: b.State},
// Must attach schemas before ReferenceTransformer so that we can
// analyze the configuration to find references.
&AttachSchemaTransformer{Plugins: b.Plugins, Config: b.Config},
// Create expansion nodes for all of the module calls. This must
// come after all other transformers that create nodes representing
// objects that can belong to modules.
&ModuleExpansionTransformer{Concrete: b.ConcreteModule, Config: b.Config},
// Connect so that the references are ready for targeting. We'll
// have to connect again later for providers and so on.
&ReferenceTransformer{},
&AttachDependenciesTransformer{},
// Make sure data sources are aware of any depends_on from the
// configuration
&attachDataResourceDependsOnTransformer{},
// Target
&TargetsTransformer{Targets: b.Targets},
// Detect when create_before_destroy must be forced on for a particular
// node due to dependency edges, to avoid graph cycles during apply.
&ForcedCBDTransformer{},
// Close opened plugin connections
&CloseProviderTransformer{},
// Close the root module
&CloseRootModuleTransformer{},
// Perform the transitive reduction to make our graph a bit
// more understandable if possible (it usually is possible).
&TransitiveReductionTransformer{},
}
return steps
}
func (b *PlanGraphBuilder) init() {
// Do nothing if the user requests customizing the fields
if b.CustomConcrete {
return
}
b.ConcreteProvider = func(a *NodeAbstractProvider) dag.Vertex {
return &NodeApplyableProvider{
NodeAbstractProvider: a,
}
}
b.ConcreteResource = func(a *NodeAbstractResource) dag.Vertex {
return &nodeExpandPlannableResource{
NodeAbstractResource: a,
skipRefresh: b.skipRefresh,
skipPlanChanges: b.skipPlanChanges,
forceReplace: b.ForceReplace,
}
}
b.ConcreteResourceOrphan = func(a *NodeAbstractResourceInstance) dag.Vertex {
return &NodePlannableResourceInstanceOrphan{
NodeAbstractResourceInstance: a,
skipRefresh: b.skipRefresh,
skipPlanChanges: b.skipPlanChanges,
}
}
}