opentofu/terraform/node_output.go
James Bardin a32028aeed evaluate vars and outputs during import
Outputs were not being evaluated during import, because it was not added
to the walk filter.

Remove any unnecessary walk filters from all the Execute nodes.
2020-10-06 17:22:50 -04:00

372 lines
11 KiB
Go

package terraform
import (
"fmt"
"log"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/dag"
"github.com/hashicorp/terraform/lang"
"github.com/hashicorp/terraform/plans"
"github.com/hashicorp/terraform/states"
"github.com/zclconf/go-cty/cty"
)
// nodeExpandOutput is the placeholder for an output that has not yet had
// its module path expanded.
type nodeExpandOutput struct {
Addr addrs.OutputValue
Module addrs.Module
Config *configs.Output
}
var (
_ GraphNodeReferenceable = (*nodeExpandOutput)(nil)
_ GraphNodeReferencer = (*nodeExpandOutput)(nil)
_ GraphNodeReferenceOutside = (*nodeExpandOutput)(nil)
_ GraphNodeDynamicExpandable = (*nodeExpandOutput)(nil)
_ graphNodeTemporaryValue = (*nodeExpandOutput)(nil)
_ graphNodeExpandsInstances = (*nodeExpandOutput)(nil)
)
func (n *nodeExpandOutput) expandsInstances() {}
func (n *nodeExpandOutput) temporaryValue() bool {
// this must always be evaluated if it is a root module output
return !n.Module.IsRoot()
}
func (n *nodeExpandOutput) DynamicExpand(ctx EvalContext) (*Graph, error) {
var g Graph
expander := ctx.InstanceExpander()
for _, module := range expander.ExpandModule(n.Module) {
o := &NodeApplyableOutput{
Addr: n.Addr.Absolute(module),
Config: n.Config,
}
log.Printf("[TRACE] Expanding output: adding %s as %T", o.Addr.String(), o)
g.Add(o)
}
return &g, nil
}
func (n *nodeExpandOutput) Name() string {
path := n.Module.String()
addr := n.Addr.String() + " (expand)"
if path != "" {
return path + "." + addr
}
return addr
}
// GraphNodeModulePath
func (n *nodeExpandOutput) ModulePath() addrs.Module {
return n.Module
}
// GraphNodeReferenceable
func (n *nodeExpandOutput) ReferenceableAddrs() []addrs.Referenceable {
// An output in the root module can't be referenced at all.
if n.Module.IsRoot() {
return nil
}
// the output is referenced through the module call, and via the
// module itself.
_, call := n.Module.Call()
callOutput := addrs.ModuleCallOutput{
Call: call,
Name: n.Addr.Name,
}
// Otherwise, we can reference the output via the
// module call itself
return []addrs.Referenceable{call, callOutput}
}
// GraphNodeReferenceOutside implementation
func (n *nodeExpandOutput) ReferenceOutside() (selfPath, referencePath addrs.Module) {
// Output values have their expressions resolved in the context of the
// module where they are defined.
referencePath = n.Module
// ...but they are referenced in the context of their calling module.
selfPath = referencePath.Parent()
return // uses named return values
}
// GraphNodeReferencer
func (n *nodeExpandOutput) References() []*addrs.Reference {
return referencesForOutput(n.Config)
}
// NodeApplyableOutput represents an output that is "applyable":
// it is ready to be applied.
type NodeApplyableOutput struct {
Addr addrs.AbsOutputValue
Config *configs.Output // Config is the output in the config
}
var (
_ GraphNodeModuleInstance = (*NodeApplyableOutput)(nil)
_ GraphNodeReferenceable = (*NodeApplyableOutput)(nil)
_ GraphNodeReferencer = (*NodeApplyableOutput)(nil)
_ GraphNodeReferenceOutside = (*NodeApplyableOutput)(nil)
_ GraphNodeExecutable = (*NodeApplyableOutput)(nil)
_ graphNodeTemporaryValue = (*NodeApplyableOutput)(nil)
_ dag.GraphNodeDotter = (*NodeApplyableOutput)(nil)
)
func (n *NodeApplyableOutput) temporaryValue() bool {
// this must always be evaluated if it is a root module output
return !n.Addr.Module.IsRoot()
}
func (n *NodeApplyableOutput) Name() string {
return n.Addr.String()
}
// GraphNodeModuleInstance
func (n *NodeApplyableOutput) Path() addrs.ModuleInstance {
return n.Addr.Module
}
// GraphNodeModulePath
func (n *NodeApplyableOutput) ModulePath() addrs.Module {
return n.Addr.Module.Module()
}
func referenceOutsideForOutput(addr addrs.AbsOutputValue) (selfPath, referencePath addrs.Module) {
// Output values have their expressions resolved in the context of the
// module where they are defined.
referencePath = addr.Module.Module()
// ...but they are referenced in the context of their calling module.
selfPath = addr.Module.Parent().Module()
return // uses named return values
}
// GraphNodeReferenceOutside implementation
func (n *NodeApplyableOutput) ReferenceOutside() (selfPath, referencePath addrs.Module) {
return referenceOutsideForOutput(n.Addr)
}
func referenceableAddrsForOutput(addr addrs.AbsOutputValue) []addrs.Referenceable {
// An output in the root module can't be referenced at all.
if addr.Module.IsRoot() {
return nil
}
// Otherwise, we can be referenced via a reference to our output name
// on the parent module's call, or via a reference to the entire call.
// e.g. module.foo.bar or just module.foo .
// Note that our ReferenceOutside method causes these addresses to be
// relative to the calling module, not the module where the output
// was declared.
_, outp := addr.ModuleCallOutput()
_, call := addr.Module.CallInstance()
return []addrs.Referenceable{outp, call}
}
// GraphNodeReferenceable
func (n *NodeApplyableOutput) ReferenceableAddrs() []addrs.Referenceable {
return referenceableAddrsForOutput(n.Addr)
}
func referencesForOutput(c *configs.Output) []*addrs.Reference {
impRefs, _ := lang.ReferencesInExpr(c.Expr)
expRefs, _ := lang.References(c.DependsOn)
l := len(impRefs) + len(expRefs)
if l == 0 {
return nil
}
refs := make([]*addrs.Reference, 0, l)
refs = append(refs, impRefs...)
refs = append(refs, expRefs...)
return refs
}
// GraphNodeReferencer
func (n *NodeApplyableOutput) References() []*addrs.Reference {
return referencesForOutput(n.Config)
}
// GraphNodeExecutable
func (n *NodeApplyableOutput) Execute(ctx EvalContext, op walkOperation) error {
// This has to run before we have a state lock, since evaluation also
// reads the state
val, diags := ctx.EvaluateExpr(n.Config.Expr, cty.DynamicPseudoType, nil)
// We'll handle errors below, after we have loaded the module.
// Outputs don't have a separate mode for validation, so validate
// depends_on expressions here too
diags = diags.Append(validateDependsOn(ctx, n.Config.DependsOn))
// Ensure that non-sensitive outputs don't include sensitive values
_, marks := val.UnmarkDeep()
_, hasSensitive := marks["sensitive"]
if !n.Config.Sensitive && hasSensitive {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Output refers to sensitive values",
Detail: "Expressions used in outputs can only refer to sensitive values if the sensitive attribute is true.",
Subject: n.Config.DeclRange.Ptr(),
})
}
state := ctx.State()
if state == nil {
return nil
}
changes := ctx.Changes() // may be nil, if we're not working on a changeset
// handling the interpolation error
if diags.HasErrors() {
if flagWarnOutputErrors {
log.Printf("[ERROR] Output interpolation %q failed: %s", n.Addr, diags.Err())
// if we're continuing, make sure the output is included, and
// marked as unknown. If the evaluator was able to find a type
// for the value in spite of the error then we'll use it.
n.setValue(state, changes, cty.UnknownVal(val.Type()))
return EvalEarlyExitError{}
}
return diags.Err()
}
n.setValue(state, changes, val)
// If we were able to evaluate a new value, we can update that in the
// refreshed state as well.
if state = ctx.RefreshState(); state != nil && val.IsWhollyKnown() {
n.setValue(state, changes, val)
}
return nil
}
// dag.GraphNodeDotter impl.
func (n *NodeApplyableOutput) DotNode(name string, opts *dag.DotOpts) *dag.DotNode {
return &dag.DotNode{
Name: name,
Attrs: map[string]string{
"label": n.Name(),
"shape": "note",
},
}
}
// NodeDestroyableOutput represents an output that is "destroybale":
// its application will remove the output from the state.
type NodeDestroyableOutput struct {
Addr addrs.AbsOutputValue
Config *configs.Output // Config is the output in the config
}
var (
_ GraphNodeExecutable = (*NodeDestroyableOutput)(nil)
_ dag.GraphNodeDotter = (*NodeDestroyableOutput)(nil)
)
func (n *NodeDestroyableOutput) Name() string {
return fmt.Sprintf("%s (destroy)", n.Addr.String())
}
// GraphNodeModulePath
func (n *NodeDestroyableOutput) ModulePath() addrs.Module {
return n.Addr.Module.Module()
}
func (n *NodeDestroyableOutput) temporaryValue() bool {
// this must always be evaluated if it is a root module output
return !n.Addr.Module.IsRoot()
}
// GraphNodeExecutable
func (n *NodeDestroyableOutput) Execute(ctx EvalContext, op walkOperation) error {
state := ctx.State()
if state == nil {
return nil
}
state.RemoveOutputValue(n.Addr)
return nil
}
// dag.GraphNodeDotter impl.
func (n *NodeDestroyableOutput) DotNode(name string, opts *dag.DotOpts) *dag.DotNode {
return &dag.DotNode{
Name: name,
Attrs: map[string]string{
"label": n.Name(),
"shape": "note",
},
}
}
func (n *NodeApplyableOutput) setValue(state *states.SyncState, changes *plans.ChangesSync, val cty.Value) {
if val.IsKnown() && !val.IsNull() {
// The state itself doesn't represent unknown values, so we null them
// out here and then we'll save the real unknown value in the planned
// changeset below, if we have one on this graph walk.
log.Printf("[TRACE] EvalWriteOutput: Saving value for %s in state", n.Addr)
unmarkedVal, _ := val.UnmarkDeep()
stateVal := cty.UnknownAsNull(unmarkedVal)
state.SetOutputValue(n.Addr, stateVal, n.Config.Sensitive)
} else {
log.Printf("[TRACE] EvalWriteOutput: Removing %s from state (it is now null)", n.Addr)
state.RemoveOutputValue(n.Addr)
}
// If we also have an active changeset then we'll replicate the value in
// there. This is used in preference to the state where present, since it
// *is* able to represent unknowns, while the state cannot.
if changes != nil {
// For the moment we are not properly tracking changes to output
// values, and just marking them always as "Create" or "Destroy"
// actions. A future release will rework the output lifecycle so we
// can track their changes properly, in a similar way to how we work
// with resource instances.
var change *plans.OutputChange
if !val.IsNull() {
change = &plans.OutputChange{
Addr: n.Addr,
Sensitive: n.Config.Sensitive,
Change: plans.Change{
Action: plans.Create,
Before: cty.NullVal(cty.DynamicPseudoType),
After: val,
},
}
} else {
change = &plans.OutputChange{
Addr: n.Addr,
Sensitive: n.Config.Sensitive,
Change: plans.Change{
// This is just a weird placeholder delete action since
// we don't have an actual prior value to indicate.
// FIXME: Generate real planned changes for output values
// that include the old values.
Action: plans.Delete,
Before: cty.NullVal(cty.DynamicPseudoType),
After: cty.NullVal(cty.DynamicPseudoType),
},
}
}
cs, err := change.Encode()
if err != nil {
// Should never happen, since we just constructed this right above
panic(fmt.Sprintf("planned change for %s could not be encoded: %s", n.Addr, err))
}
log.Printf("[TRACE] ExecuteWriteOutput: Saving %s change for %s in changeset", change.Action, n.Addr)
changes.RemoveOutputChange(n.Addr) // remove any existing planned change, if present
changes.AppendOutputChange(cs) // add the new planned change
}
}