opentofu/terraform/transform_targets.go
James Bardin a5c4f7e08e remove unneeded partial outputs
filterPartialOutputs was not taking into account that some dependent
resources might yet be removed from the graph. Check that they are not
in the targeted set before declaring that the output remain.
2018-03-19 21:20:06 -04:00

275 lines
8.2 KiB
Go

package terraform
import (
"log"
"github.com/hashicorp/terraform/dag"
)
// GraphNodeTargetable is an interface for graph nodes to implement when they
// need to be told about incoming targets. This is useful for nodes that need
// to respect targets as they dynamically expand. Note that the list of targets
// provided will contain every target provided, and each implementing graph
// node must filter this list to targets considered relevant.
type GraphNodeTargetable interface {
SetTargets([]ResourceAddress)
}
// GraphNodeTargetDownstream is an interface for graph nodes that need to
// be remain present under targeting if any of their dependencies are targeted.
// TargetDownstream is called with the set of vertices that are direct
// dependencies for the node, and it should return true if the node must remain
// in the graph in support of those dependencies.
//
// This is used in situations where the dependency edges are representing an
// ordering relationship but the dependency must still be visited if its
// dependencies are visited. This is true for outputs, for example, since
// they must get updated if any of their dependent resources get updated,
// which would not normally be true if one of their dependencies were targeted.
type GraphNodeTargetDownstream interface {
TargetDownstream(targeted, untargeted *dag.Set) bool
}
// TargetsTransformer is a GraphTransformer that, when the user specifies a
// list of resources to target, limits the graph to only those resources and
// their dependencies.
type TargetsTransformer struct {
// List of targeted resource names specified by the user
Targets []string
// List of parsed targets, provided by callers like ResourceCountTransform
// that already have the targets parsed
ParsedTargets []ResourceAddress
// If set, the index portions of resource addresses will be ignored
// for comparison. This is used when transforming a graph where
// counted resources have not yet been expanded, since otherwise
// the unexpanded nodes (which never have indices) would not match.
IgnoreIndices bool
// Set to true when we're in a `terraform destroy` or a
// `terraform plan -destroy`
Destroy bool
}
func (t *TargetsTransformer) Transform(g *Graph) error {
if len(t.Targets) > 0 && len(t.ParsedTargets) == 0 {
addrs, err := t.parseTargetAddresses()
if err != nil {
return err
}
t.ParsedTargets = addrs
}
if len(t.ParsedTargets) > 0 {
targetedNodes, err := t.selectTargetedNodes(g, t.ParsedTargets)
if err != nil {
return err
}
for _, v := range g.Vertices() {
removable := false
if _, ok := v.(GraphNodeResource); ok {
removable = true
}
if vr, ok := v.(RemovableIfNotTargeted); ok {
removable = vr.RemoveIfNotTargeted()
}
if removable && !targetedNodes.Include(v) {
log.Printf("[DEBUG] Removing %q, filtered by targeting.", dag.VertexName(v))
g.Remove(v)
}
}
}
return nil
}
func (t *TargetsTransformer) parseTargetAddresses() ([]ResourceAddress, error) {
addrs := make([]ResourceAddress, len(t.Targets))
for i, target := range t.Targets {
ta, err := ParseResourceAddress(target)
if err != nil {
return nil, err
}
addrs[i] = *ta
}
return addrs, nil
}
// Returns the list of targeted nodes. A targeted node is either addressed
// directly, or is an Ancestor of a targeted node. Destroy mode keeps
// Descendents instead of Ancestors.
func (t *TargetsTransformer) selectTargetedNodes(
g *Graph, addrs []ResourceAddress) (*dag.Set, error) {
targetedNodes := new(dag.Set)
vertices := g.Vertices()
for _, v := range vertices {
if t.nodeIsTarget(v, addrs) {
targetedNodes.Add(v)
// We inform nodes that ask about the list of targets - helps for nodes
// that need to dynamically expand. Note that this only occurs for nodes
// that are already directly targeted.
if tn, ok := v.(GraphNodeTargetable); ok {
tn.SetTargets(addrs)
}
var deps *dag.Set
var err error
if t.Destroy {
deps, err = g.Descendents(v)
} else {
deps, err = g.Ancestors(v)
}
if err != nil {
return nil, err
}
for _, d := range deps.List() {
targetedNodes.Add(d)
}
}
}
return t.addDependencies(targetedNodes, g)
}
func (t *TargetsTransformer) addDependencies(targetedNodes *dag.Set, g *Graph) (*dag.Set, error) {
// Handle nodes that need to be included if their dependencies are included.
// This requires multiple passes since we need to catch transitive
// dependencies if and only if they are via other nodes that also
// support TargetDownstream. For example:
// output -> output -> targeted-resource: both outputs need to be targeted
// output -> non-targeted-resource -> targeted-resource: output not targeted
//
// We'll keep looping until we stop targeting more nodes.
queue := targetedNodes.List()
for len(queue) > 0 {
vertices := queue
queue = nil // ready to append for next iteration if neccessary
for _, v := range vertices {
dependers := g.UpEdges(v)
if dependers == nil {
// indicates that there are no up edges for this node, so
// we have nothing to do here.
continue
}
dependers = dependers.Filter(func(dv interface{}) bool {
_, ok := dv.(GraphNodeTargetDownstream)
return ok
})
if dependers.Len() == 0 {
continue
}
for _, dv := range dependers.List() {
if targetedNodes.Include(dv) {
// Already present, so nothing to do
continue
}
// We'll give the node some information about what it's
// depending on in case that informs its decision about whether
// it is safe to be targeted.
deps := g.DownEdges(v)
depsTargeted := deps.Intersection(targetedNodes)
depsUntargeted := deps.Difference(depsTargeted)
if dv.(GraphNodeTargetDownstream).TargetDownstream(depsTargeted, depsUntargeted) {
targetedNodes.Add(dv)
// Need to visit this node on the next pass to see if it
// has any transitive dependers.
queue = append(queue, dv)
}
}
}
}
return targetedNodes.Filter(func(dv interface{}) bool {
return filterPartialOutputs(dv, targetedNodes, g)
}), nil
}
// Outputs may have been included transitively, but if any of their
// dependencies have been pruned they won't be resolvable.
// If nothing depends on the output, and the output is missing any
// dependencies, remove it from the graph.
// This essentially maintains the previous behavior where interpolation in
// outputs would fail silently, but can now surface errors where the output
// is required.
func filterPartialOutputs(v interface{}, targetedNodes *dag.Set, g *Graph) bool {
// should this just be done with TargetDownstream?
if _, ok := v.(*NodeApplyableOutput); !ok {
return true
}
dependers := g.UpEdges(v)
for _, d := range dependers.List() {
if _, ok := d.(*NodeCountBoundary); ok {
continue
}
if !targetedNodes.Include(d) {
// this one is going to be removed, so it doesn't count
continue
}
// as soon as we see a real dependency, we mark this as
// non-removable
return true
}
depends := g.DownEdges(v)
for _, d := range depends.List() {
if !targetedNodes.Include(d) {
log.Printf("[WARN] %s missing targeted dependency %s, removing from the graph",
dag.VertexName(v), dag.VertexName(d))
return false
}
}
return true
}
func (t *TargetsTransformer) nodeIsTarget(
v dag.Vertex, addrs []ResourceAddress) bool {
r, ok := v.(GraphNodeResource)
if !ok {
return false
}
addr := r.ResourceAddr()
for _, targetAddr := range addrs {
if t.IgnoreIndices {
// targetAddr is not a pointer, so we can safely mutate it without
// interfering with references elsewhere.
targetAddr.Index = -1
}
if targetAddr.Contains(addr) {
return true
}
}
return false
}
// RemovableIfNotTargeted is a special interface for graph nodes that
// aren't directly addressable, but need to be removed from the graph when they
// are not targeted. (Nodes that are not directly targeted end up in the set of
// targeted nodes because something that _is_ targeted depends on them.) The
// initial use case for this interface is GraphNodeConfigVariable, which was
// having trouble interpolating for module variables in targeted scenarios that
// filtered out the resource node being referenced.
type RemovableIfNotTargeted interface {
RemoveIfNotTargeted() bool
}