opentofu/configs/configschema/coerce_value.go
Martin Atkins 88e76fa9ef configs/configschema: Introduce the NestingGroup mode for blocks
In study of existing providers we've found a pattern we werent previously
accounting for of using a nested block type to represent a group of
arguments that relate to a particular feature that is always enabled but
where it improves configuration readability to group all of its settings
together in a nested block.

The existing NestingSingle was not a good fit for this because it is
designed under the assumption that the presence or absence of the block
has some significance in enabling or disabling the relevant feature, and
so for these always-active cases we'd generate a misleading plan where
the settings for the feature appear totally absent, rather than showing
the default values that will be selected.

NestingGroup is, therefore, a slight variation of NestingSingle where
presence vs. absence of the block is not distinguishable (it's never null)
and instead its contents are treated as unset when the block is absent.
This then in turn causes any default values associated with the nested
arguments to be honored and displayed in the plan whenever the block is
not explicitly configured.

The current SDK cannot activate this mode, but that's okay because its
"legacy type system" opt-out flag allows it to force a block to be
processed in this way anyway. We're adding this now so that we can
introduce the feature in a future SDK without causing a breaking change
to the protocol, since the set of possible block nesting modes is not
extensible.
2019-04-10 14:53:52 -07:00

275 lines
8.4 KiB
Go

package configschema
import (
"fmt"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
// CoerceValue attempts to force the given value to conform to the type
// implied by the receiever, while also applying the same validation and
// transformation rules that would be applied by the decoder specification
// returned by method DecoderSpec.
//
// This is useful in situations where a configuration must be derived from
// an already-decoded value. It is always better to decode directly from
// configuration where possible since then source location information is
// still available to produce diagnostics, but in special situations this
// function allows a compatible result to be obtained even if the
// configuration objects are not available.
//
// If the given value cannot be converted to conform to the receiving schema
// then an error is returned describing one of possibly many problems. This
// error may be a cty.PathError indicating a position within the nested
// data structure where the problem applies.
func (b *Block) CoerceValue(in cty.Value) (cty.Value, error) {
var path cty.Path
return b.coerceValue(in, path)
}
func (b *Block) coerceValue(in cty.Value, path cty.Path) (cty.Value, error) {
switch {
case in.IsNull():
return cty.NullVal(b.ImpliedType()), nil
case !in.IsKnown():
return cty.UnknownVal(b.ImpliedType()), nil
}
ty := in.Type()
if !ty.IsObjectType() {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("an object is required")
}
for name := range ty.AttributeTypes() {
if _, defined := b.Attributes[name]; defined {
continue
}
if _, defined := b.BlockTypes[name]; defined {
continue
}
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("unexpected attribute %q", name)
}
attrs := make(map[string]cty.Value)
for name, attrS := range b.Attributes {
var val cty.Value
switch {
case ty.HasAttribute(name):
val = in.GetAttr(name)
case attrS.Computed || attrS.Optional:
val = cty.NullVal(attrS.Type)
default:
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("attribute %q is required", name)
}
val, err := attrS.coerceValue(val, append(path, cty.GetAttrStep{Name: name}))
if err != nil {
return cty.UnknownVal(b.ImpliedType()), err
}
attrs[name] = val
}
for typeName, blockS := range b.BlockTypes {
switch blockS.Nesting {
case NestingSingle, NestingGroup:
switch {
case ty.HasAttribute(typeName):
var err error
val := in.GetAttr(typeName)
attrs[typeName], err = blockS.coerceValue(val, append(path, cty.GetAttrStep{Name: typeName}))
if err != nil {
return cty.UnknownVal(b.ImpliedType()), err
}
case blockS.MinItems != 1 && blockS.MaxItems != 1:
if blockS.Nesting == NestingGroup {
attrs[typeName] = blockS.EmptyValue()
} else {
attrs[typeName] = cty.NullVal(blockS.ImpliedType())
}
default:
// We use the word "attribute" here because we're talking about
// the cty sense of that word rather than the HCL sense.
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("attribute %q is required", typeName)
}
case NestingList:
switch {
case ty.HasAttribute(typeName):
coll := in.GetAttr(typeName)
switch {
case coll.IsNull():
attrs[typeName] = cty.NullVal(cty.List(blockS.ImpliedType()))
continue
case !coll.IsKnown():
attrs[typeName] = cty.UnknownVal(cty.List(blockS.ImpliedType()))
continue
}
if !coll.CanIterateElements() {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("must be a list")
}
l := coll.LengthInt()
if l < blockS.MinItems {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("insufficient items for attribute %q; must have at least %d", typeName, blockS.MinItems)
}
if l > blockS.MaxItems && blockS.MaxItems > 0 {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("too many items for attribute %q; cannot have more than %d", typeName, blockS.MaxItems)
}
if l == 0 {
attrs[typeName] = cty.ListValEmpty(blockS.ImpliedType())
continue
}
elems := make([]cty.Value, 0, l)
{
path = append(path, cty.GetAttrStep{Name: typeName})
for it := coll.ElementIterator(); it.Next(); {
var err error
idx, val := it.Element()
val, err = blockS.coerceValue(val, append(path, cty.IndexStep{Key: idx}))
if err != nil {
return cty.UnknownVal(b.ImpliedType()), err
}
elems = append(elems, val)
}
}
attrs[typeName] = cty.ListVal(elems)
case blockS.MinItems == 0:
attrs[typeName] = cty.ListValEmpty(blockS.ImpliedType())
default:
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("attribute %q is required", typeName)
}
case NestingSet:
switch {
case ty.HasAttribute(typeName):
coll := in.GetAttr(typeName)
switch {
case coll.IsNull():
attrs[typeName] = cty.NullVal(cty.Set(blockS.ImpliedType()))
continue
case !coll.IsKnown():
attrs[typeName] = cty.UnknownVal(cty.Set(blockS.ImpliedType()))
continue
}
if !coll.CanIterateElements() {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("must be a set")
}
l := coll.LengthInt()
if l < blockS.MinItems {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("insufficient items for attribute %q; must have at least %d", typeName, blockS.MinItems)
}
if l > blockS.MaxItems && blockS.MaxItems > 0 {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("too many items for attribute %q; cannot have more than %d", typeName, blockS.MaxItems)
}
if l == 0 {
attrs[typeName] = cty.SetValEmpty(blockS.ImpliedType())
continue
}
elems := make([]cty.Value, 0, l)
{
path = append(path, cty.GetAttrStep{Name: typeName})
for it := coll.ElementIterator(); it.Next(); {
var err error
idx, val := it.Element()
val, err = blockS.coerceValue(val, append(path, cty.IndexStep{Key: idx}))
if err != nil {
return cty.UnknownVal(b.ImpliedType()), err
}
elems = append(elems, val)
}
}
attrs[typeName] = cty.SetVal(elems)
case blockS.MinItems == 0:
attrs[typeName] = cty.SetValEmpty(blockS.ImpliedType())
default:
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("attribute %q is required", typeName)
}
case NestingMap:
switch {
case ty.HasAttribute(typeName):
coll := in.GetAttr(typeName)
switch {
case coll.IsNull():
attrs[typeName] = cty.NullVal(cty.Map(blockS.ImpliedType()))
continue
case !coll.IsKnown():
attrs[typeName] = cty.UnknownVal(cty.Map(blockS.ImpliedType()))
continue
}
if !coll.CanIterateElements() {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("must be a map")
}
l := coll.LengthInt()
if l == 0 {
attrs[typeName] = cty.MapValEmpty(blockS.ImpliedType())
continue
}
elems := make(map[string]cty.Value)
{
path = append(path, cty.GetAttrStep{Name: typeName})
for it := coll.ElementIterator(); it.Next(); {
var err error
key, val := it.Element()
if key.Type() != cty.String || key.IsNull() || !key.IsKnown() {
return cty.UnknownVal(b.ImpliedType()), path.NewErrorf("must be a map")
}
val, err = blockS.coerceValue(val, append(path, cty.IndexStep{Key: key}))
if err != nil {
return cty.UnknownVal(b.ImpliedType()), err
}
elems[key.AsString()] = val
}
}
// If the attribute values here contain any DynamicPseudoTypes,
// the concrete type must be an object.
useObject := false
switch {
case coll.Type().IsObjectType():
useObject = true
default:
// It's possible that we were given a map, and need to coerce it to an object
ety := coll.Type().ElementType()
for _, v := range elems {
if !v.Type().Equals(ety) {
useObject = true
break
}
}
}
if useObject {
attrs[typeName] = cty.ObjectVal(elems)
} else {
attrs[typeName] = cty.MapVal(elems)
}
default:
attrs[typeName] = cty.MapValEmpty(blockS.ImpliedType())
}
default:
// should never happen because above is exhaustive
panic(fmt.Errorf("unsupported nesting mode %#v", blockS.Nesting))
}
}
return cty.ObjectVal(attrs), nil
}
func (a *Attribute) coerceValue(in cty.Value, path cty.Path) (cty.Value, error) {
val, err := convert.Convert(in, a.Type)
if err != nil {
return cty.UnknownVal(a.Type), path.NewError(err)
}
return val, nil
}