opentofu/internal/dag/dag.go
Nick Fagerlund ccd7bd017e Clarify some comments in internal/dag
When reading this code to check Terraform's graph sorting behavior, I got very
confused about the direction of traversal for several methods. Although some of
these methods would also probably benefit from renames, this commit only updates
their doc comments to use the same directional terminology that we use in the
`Edge` interface (source/target).
2022-10-06 15:10:33 -07:00

370 lines
9.3 KiB
Go

package dag
import (
"fmt"
"sort"
"strings"
"github.com/hashicorp/terraform/internal/tfdiags"
"github.com/hashicorp/go-multierror"
)
// AcyclicGraph is a specialization of Graph that cannot have cycles.
type AcyclicGraph struct {
Graph
}
// WalkFunc is the callback used for walking the graph.
type WalkFunc func(Vertex) tfdiags.Diagnostics
// DepthWalkFunc is a walk function that also receives the current depth of the
// walk as an argument
type DepthWalkFunc func(Vertex, int) error
func (g *AcyclicGraph) DirectedGraph() Grapher {
return g
}
// Returns a Set that includes every Vertex yielded by walking down from the
// provided starting Vertex v.
func (g *AcyclicGraph) Ancestors(v Vertex) (Set, error) {
s := make(Set)
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.DepthFirstWalk(g.downEdgesNoCopy(v), memoFunc); err != nil {
return nil, err
}
return s, nil
}
// Returns a Set that includes every Vertex yielded by walking up from the
// provided starting Vertex v.
func (g *AcyclicGraph) Descendents(v Vertex) (Set, error) {
s := make(Set)
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.ReverseDepthFirstWalk(g.upEdgesNoCopy(v), memoFunc); err != nil {
return nil, err
}
return s, nil
}
// Root returns the root of the DAG, or an error.
//
// Complexity: O(V)
func (g *AcyclicGraph) Root() (Vertex, error) {
roots := make([]Vertex, 0, 1)
for _, v := range g.Vertices() {
if g.upEdgesNoCopy(v).Len() == 0 {
roots = append(roots, v)
}
}
if len(roots) > 1 {
// TODO(mitchellh): make this error message a lot better
return nil, fmt.Errorf("multiple roots: %#v", roots)
}
if len(roots) == 0 {
return nil, fmt.Errorf("no roots found")
}
return roots[0], nil
}
// TransitiveReduction performs the transitive reduction of graph g in place.
// The transitive reduction of a graph is a graph with as few edges as
// possible with the same reachability as the original graph. This means
// that if there are three nodes A => B => C, and A connects to both
// B and C, and B connects to C, then the transitive reduction is the
// same graph with only a single edge between A and B, and a single edge
// between B and C.
//
// The graph must be free of cycles for this operation to behave properly.
//
// Complexity: O(V(V+E)), or asymptotically O(VE)
func (g *AcyclicGraph) TransitiveReduction() {
// For each vertex u in graph g, do a DFS starting from each vertex
// v such that the edge (u,v) exists (v is a direct descendant of u).
//
// For each v-prime reachable from v, remove the edge (u, v-prime).
for _, u := range g.Vertices() {
uTargets := g.downEdgesNoCopy(u)
g.DepthFirstWalk(g.downEdgesNoCopy(u), func(v Vertex, d int) error {
shared := uTargets.Intersection(g.downEdgesNoCopy(v))
for _, vPrime := range shared {
g.RemoveEdge(BasicEdge(u, vPrime))
}
return nil
})
}
}
// Validate validates the DAG. A DAG is valid if it has a single root
// with no cycles.
func (g *AcyclicGraph) Validate() error {
if _, err := g.Root(); err != nil {
return err
}
// Look for cycles of more than 1 component
var err error
cycles := g.Cycles()
if len(cycles) > 0 {
for _, cycle := range cycles {
cycleStr := make([]string, len(cycle))
for j, vertex := range cycle {
cycleStr[j] = VertexName(vertex)
}
err = multierror.Append(err, fmt.Errorf(
"Cycle: %s", strings.Join(cycleStr, ", ")))
}
}
// Look for cycles to self
for _, e := range g.Edges() {
if e.Source() == e.Target() {
err = multierror.Append(err, fmt.Errorf(
"Self reference: %s", VertexName(e.Source())))
}
}
return err
}
// Cycles reports any cycles between graph nodes.
// Self-referencing nodes are not reported, and must be detected separately.
func (g *AcyclicGraph) Cycles() [][]Vertex {
var cycles [][]Vertex
for _, cycle := range StronglyConnected(&g.Graph) {
if len(cycle) > 1 {
cycles = append(cycles, cycle)
}
}
return cycles
}
// Walk walks the graph, calling your callback as each node is visited.
// This will walk nodes in parallel if it can. The resulting diagnostics
// contains problems from all graphs visited, in no particular order.
func (g *AcyclicGraph) Walk(cb WalkFunc) tfdiags.Diagnostics {
w := &Walker{Callback: cb, Reverse: true}
w.Update(g)
return w.Wait()
}
// simple convenience helper for converting a dag.Set to a []Vertex
func AsVertexList(s Set) []Vertex {
vertexList := make([]Vertex, 0, len(s))
for _, raw := range s {
vertexList = append(vertexList, raw.(Vertex))
}
return vertexList
}
type vertexAtDepth struct {
Vertex Vertex
Depth int
}
// TopologicalOrder returns a topological sort of the given graph, with source
// vertices ordered before the targets of their edges. The nodes are not sorted,
// and any valid order may be returned. This function will panic if it
// encounters a cycle.
func (g *AcyclicGraph) TopologicalOrder() []Vertex {
return g.topoOrder(upOrder)
}
// ReverseTopologicalOrder returns a topological sort of the given graph, with
// target vertices ordered before the sources of their edges. The nodes are not
// sorted, and any valid order may be returned. This function will panic if it
// encounters a cycle.
func (g *AcyclicGraph) ReverseTopologicalOrder() []Vertex {
return g.topoOrder(downOrder)
}
func (g *AcyclicGraph) topoOrder(order walkType) []Vertex {
// Use a dfs-based sorting algorithm, similar to that used in
// TransitiveReduction.
sorted := make([]Vertex, 0, len(g.vertices))
// tmp track the current working node to check for cycles
tmp := map[Vertex]bool{}
// perm tracks completed nodes to end the recursion
perm := map[Vertex]bool{}
var visit func(v Vertex)
visit = func(v Vertex) {
if perm[v] {
return
}
if tmp[v] {
panic("cycle found in dag")
}
tmp[v] = true
var next Set
switch {
case order&downOrder != 0:
next = g.downEdgesNoCopy(v)
case order&upOrder != 0:
next = g.upEdgesNoCopy(v)
default:
panic(fmt.Sprintln("invalid order", order))
}
for _, u := range next {
visit(u)
}
tmp[v] = false
perm[v] = true
sorted = append(sorted, v)
}
for _, v := range g.Vertices() {
visit(v)
}
return sorted
}
type walkType uint64
const (
depthFirst walkType = 1 << iota
breadthFirst
downOrder
upOrder
)
// DepthFirstWalk does a depth-first walk of the graph starting from
// the vertices in start.
func (g *AcyclicGraph) DepthFirstWalk(start Set, f DepthWalkFunc) error {
return g.walk(depthFirst|downOrder, false, start, f)
}
// ReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// the vertices in start.
func (g *AcyclicGraph) ReverseDepthFirstWalk(start Set, f DepthWalkFunc) error {
return g.walk(depthFirst|upOrder, false, start, f)
}
// BreadthFirstWalk does a breadth-first walk of the graph starting from
// the vertices in start.
func (g *AcyclicGraph) BreadthFirstWalk(start Set, f DepthWalkFunc) error {
return g.walk(breadthFirst|downOrder, false, start, f)
}
// ReverseBreadthFirstWalk does a breadth-first walk _up_ the graph starting from
// the vertices in start.
func (g *AcyclicGraph) ReverseBreadthFirstWalk(start Set, f DepthWalkFunc) error {
return g.walk(breadthFirst|upOrder, false, start, f)
}
// Setting test to true will walk sets of vertices in sorted order for
// deterministic testing.
func (g *AcyclicGraph) walk(order walkType, test bool, start Set, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]vertexAtDepth, 0, len(start))
for _, v := range start {
frontier = append(frontier, vertexAtDepth{
Vertex: v,
Depth: 0,
})
}
if test {
testSortFrontier(frontier)
}
for len(frontier) > 0 {
// Pop the current vertex
var current vertexAtDepth
switch {
case order&depthFirst != 0:
// depth first, the frontier is used like a stack
n := len(frontier)
current = frontier[n-1]
frontier = frontier[:n-1]
case order&breadthFirst != 0:
// breadth first, the frontier is used like a queue
current = frontier[0]
frontier = frontier[1:]
default:
panic(fmt.Sprint("invalid visit order", order))
}
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
var edges Set
switch {
case order&downOrder != 0:
edges = g.downEdgesNoCopy(current.Vertex)
case order&upOrder != 0:
edges = g.upEdgesNoCopy(current.Vertex)
default:
panic(fmt.Sprint("invalid walk order", order))
}
if test {
frontier = testAppendNextSorted(frontier, edges, current.Depth+1)
} else {
frontier = appendNext(frontier, edges, current.Depth+1)
}
}
return nil
}
func appendNext(frontier []vertexAtDepth, next Set, depth int) []vertexAtDepth {
for _, v := range next {
frontier = append(frontier, vertexAtDepth{
Vertex: v,
Depth: depth,
})
}
return frontier
}
func testAppendNextSorted(frontier []vertexAtDepth, edges Set, depth int) []vertexAtDepth {
var newEdges []vertexAtDepth
for _, v := range edges {
newEdges = append(newEdges, vertexAtDepth{
Vertex: v,
Depth: depth,
})
}
testSortFrontier(newEdges)
return append(frontier, newEdges...)
}
func testSortFrontier(f []vertexAtDepth) {
sort.Slice(f, func(i, j int) bool {
return VertexName(f[i].Vertex) < VertexName(f[j].Vertex)
})
}