opentofu/terraform/node_resource_refresh.go
Chris Marchesi b807505d55 core: New refresh graph building behaviour
Currently, the refresh graph uses the resources from state as a base,
with data sources then layered on. Config is not consulted for resources
and hence new resources that are added with count (or any new resource
from config, for that matter) do not get added to the graph during
refresh.

This is leading to issues with scale in and scale out when the same
value for count is used in both resources, and data sources that may
depend on that resource (and possibly vice versa). While the resources
exist in config and can be used, the fact that ConfigTransformer for
resources is missing means that they don't get added into the graph,
leading to "index out of range" errors and what not.

Further to that, if we add these new resources to the graph for scale
out, considerations need to be taken for scale in as well, which are not
being caught 100% by the current implementation of
NodeRefreshableDataResource. Scale-in resources should be treated as
orphans, which according to the instance-form NodeRefreshableResource
node, should be NodeDestroyableDataResource nodes, but this this logic
is currently not rolled into NodeRefreshableDataResource. This causes
issues on scale-in in the form of race-ish "index out of range" errors
again.

This commit updates the refresh graph so that StateTransformer is no
longer used as the base of the graph. Instead, we add resources from the
state and config in a hybrid fashion:

 * First off, resource nodes are added from config, but only if
   resources currently exist in state.  NodeRefreshableManagedResource
   is a new expandable resource node that will expand count and add
   orphans from state. Any count-expanded node that has config but no
   state is also transformed into a plannable resource, via a new
   ResourceRefreshPlannableTransformer.
 * The NodeRefreshableDataResource node type will now add count orphans
   as NodeDestroyableDataResource nodes. This achieves the same effect
   as if the data sources were added by StateTransformer, but ensures
   there are no races in the dependency chain, with the added benefit of
   directing these nodes straight to the proper
   NodeDestroyableDataResource node.
 * Finally, config orphans (nodes that don't exist in config anymore
   period) are then added, to complete the graph.

This should ensure as much as possible that there is a refresh graph
that best represents both the current state and config with updated
variables and counts.
2017-05-12 15:45:06 -07:00

179 lines
4.6 KiB
Go

package terraform
import (
"fmt"
"github.com/hashicorp/terraform/config"
"github.com/hashicorp/terraform/dag"
)
// NodeRefreshableManagedResource represents a resource that is expanabled into
// NodeRefreshableManagedResourceInstance. Resource count orphans are also added.
type NodeRefreshableManagedResource struct {
*NodeAbstractCountResource
}
// GraphNodeDynamicExpandable
func (n *NodeRefreshableManagedResource) DynamicExpand(ctx EvalContext) (*Graph, error) {
// Grab the state which we read
state, lock := ctx.State()
lock.RLock()
defer lock.RUnlock()
// Expand the resource count which must be available by now from EvalTree
count, err := n.Config.Count()
if err != nil {
return nil, err
}
// The concrete resource factory we'll use
concreteResource := func(a *NodeAbstractResource) dag.Vertex {
// Add the config and state since we don't do that via transforms
a.Config = n.Config
return &NodeRefreshableManagedResourceInstance{
NodeAbstractResource: a,
}
}
// Start creating the steps
steps := []GraphTransformer{
// Expand the count.
&ResourceCountTransformer{
Concrete: concreteResource,
Count: count,
Addr: n.ResourceAddr(),
},
// Switch up any node missing state to a plannable resource. This helps
// catch cases where data sources depend on the counts from this resource
// during a scale out.
&ResourceRefreshPlannableTransformer{
State: state,
},
// Add the count orphans to make sure these resources are accounted for
// during a scale in.
&OrphanResourceCountTransformer{
Concrete: concreteResource,
Count: count,
Addr: n.ResourceAddr(),
State: state,
},
// Attach the state
&AttachStateTransformer{State: state},
// Targeting
&TargetsTransformer{ParsedTargets: n.Targets},
// Connect references so ordering is correct
&ReferenceTransformer{},
// Make sure there is a single root
&RootTransformer{},
}
// Build the graph
b := &BasicGraphBuilder{
Steps: steps,
Validate: true,
Name: "NodeRefreshableManagedResource",
}
return b.Build(ctx.Path())
}
// NodeRefreshableManagedResourceInstance represents a resource that is "applyable":
// it is ready to be applied and is represented by a diff.
type NodeRefreshableManagedResourceInstance struct {
*NodeAbstractResource
}
// GraphNodeDestroyer
func (n *NodeRefreshableManagedResourceInstance) DestroyAddr() *ResourceAddress {
return n.Addr
}
// GraphNodeEvalable
func (n *NodeRefreshableManagedResourceInstance) EvalTree() EvalNode {
// Eval info is different depending on what kind of resource this is
switch mode := n.Addr.Mode; mode {
case config.ManagedResourceMode:
return n.evalTreeManagedResource()
case config.DataResourceMode:
// Get the data source node. If we don't have a configuration
// then it is an orphan so we destroy it (remove it from the state).
var dn GraphNodeEvalable
if n.Config != nil {
dn = &NodeRefreshableDataResourceInstance{
NodeAbstractResource: n.NodeAbstractResource,
}
} else {
dn = &NodeDestroyableDataResource{
NodeAbstractResource: n.NodeAbstractResource,
}
}
return dn.EvalTree()
default:
panic(fmt.Errorf("unsupported resource mode %s", mode))
}
}
func (n *NodeRefreshableManagedResourceInstance) evalTreeManagedResource() EvalNode {
addr := n.NodeAbstractResource.Addr
// stateId is the ID to put into the state
stateId := addr.stateId()
// Build the instance info. More of this will be populated during eval
info := &InstanceInfo{
Id: stateId,
Type: addr.Type,
}
// Declare a bunch of variables that are used for state during
// evaluation. Most of this are written to by-address below.
var provider ResourceProvider
var state *InstanceState
// This happened during initial development. All known cases were
// fixed and tested but as a sanity check let's assert here.
if n.ResourceState == nil {
err := fmt.Errorf(
"No resource state attached for addr: %s\n\n"+
"This is a bug. Please report this to Terraform with your configuration\n"+
"and state attached. Please be careful to scrub any sensitive information.",
addr)
return &EvalReturnError{Error: &err}
}
return &EvalSequence{
Nodes: []EvalNode{
&EvalGetProvider{
Name: n.ProvidedBy()[0],
Output: &provider,
},
&EvalReadState{
Name: stateId,
Output: &state,
},
&EvalRefresh{
Info: info,
Provider: &provider,
State: &state,
Output: &state,
},
&EvalWriteState{
Name: stateId,
ResourceType: n.ResourceState.Type,
Provider: n.ResourceState.Provider,
Dependencies: n.ResourceState.Dependencies,
State: &state,
},
},
}
}