mirror of
https://github.com/opentofu/opentofu.git
synced 2024-12-30 10:47:14 -06:00
8706a18c4b
We can also rule out some attribute types as indicating something other than the legacy SDK. - Tuple types were not generated at all. - There were no single objects types, the convention was to use a block list or set of length 1. - Maps of objects were not possible to generate, since named blocks were not implemented. - Nested collections were not supported, but when they were generated they would have primitive types.
256 lines
8.4 KiB
Go
256 lines
8.4 KiB
Go
package blocktoattr
|
|
|
|
import (
|
|
"log"
|
|
|
|
"github.com/hashicorp/hcl/v2"
|
|
"github.com/hashicorp/hcl/v2/hcldec"
|
|
"github.com/hashicorp/terraform/internal/configs/configschema"
|
|
"github.com/zclconf/go-cty/cty"
|
|
)
|
|
|
|
// FixUpBlockAttrs takes a raw HCL body and adds some additional normalization
|
|
// functionality to allow attributes that are specified as having list or set
|
|
// type in the schema to be written with HCL block syntax as multiple nested
|
|
// blocks with the attribute name as the block type.
|
|
//
|
|
// The fixup is only applied in the absence of structural attribute types. The
|
|
// presence of these types indicate the use of a provider which does not
|
|
// support mapping blocks to attributes.
|
|
//
|
|
// This partially restores some of the block/attribute confusion from HCL 1
|
|
// so that existing patterns that depended on that confusion can continue to
|
|
// be used in the short term while we settle on a longer-term strategy.
|
|
//
|
|
// Most of the fixup work is actually done when the returned body is
|
|
// subsequently decoded, so while FixUpBlockAttrs always succeeds, the eventual
|
|
// decode of the body might not, if the content of the body is so ambiguous
|
|
// that there's no safe way to map it to the schema.
|
|
func FixUpBlockAttrs(body hcl.Body, schema *configschema.Block) hcl.Body {
|
|
// The schema should never be nil, but in practice it seems to be sometimes
|
|
// in the presence of poorly-configured test mocks, so we'll be robust
|
|
// by synthesizing an empty one.
|
|
if schema == nil {
|
|
schema = &configschema.Block{}
|
|
}
|
|
|
|
if skipFixup(schema) {
|
|
// we don't have any context for the resource name or type, but
|
|
// hopefully this could help locate the evaluation in the logs if there
|
|
// were a problem
|
|
log.Println("[DEBUG] skipping FixUpBlockAttrs")
|
|
return body
|
|
}
|
|
|
|
return &fixupBody{
|
|
original: body,
|
|
schema: schema,
|
|
names: ambiguousNames(schema),
|
|
}
|
|
}
|
|
|
|
// skipFixup detects any use of Attribute.NestedType, or Types which could not
|
|
// be generate by the legacy SDK when taking SchemaConfigModeAttr into account.
|
|
func skipFixup(schema *configschema.Block) bool {
|
|
for _, attr := range schema.Attributes {
|
|
if attr.NestedType != nil {
|
|
return true
|
|
}
|
|
ty := attr.Type
|
|
|
|
// Lists and sets of objects could be generated by
|
|
// SchemaConfigModeAttr, but some other combinations can be ruled out.
|
|
|
|
// Tuples and objects could not be generated at all.
|
|
if ty.IsTupleType() || ty.IsObjectType() {
|
|
return true
|
|
}
|
|
|
|
// A map of objects was not possible.
|
|
if ty.IsMapType() && ty.ElementType().IsObjectType() {
|
|
return true
|
|
}
|
|
|
|
// Nested collections were not really supported, but could be generated
|
|
// with string types (though we conservatively limit this to primitive types)
|
|
if ty.IsCollectionType() {
|
|
ety := ty.ElementType()
|
|
if ety.IsCollectionType() && !ety.ElementType().IsPrimitiveType() {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, block := range schema.BlockTypes {
|
|
if skipFixup(&block.Block) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
type fixupBody struct {
|
|
original hcl.Body
|
|
schema *configschema.Block
|
|
names map[string]struct{}
|
|
}
|
|
|
|
type unknownBlock interface {
|
|
Unknown() bool
|
|
}
|
|
|
|
func (b *fixupBody) Unknown() bool {
|
|
if u, ok := b.original.(unknownBlock); ok {
|
|
return u.Unknown()
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Content decodes content from the body. The given schema must be the lower-level
|
|
// representation of the same schema that was previously passed to FixUpBlockAttrs,
|
|
// or else the result is undefined.
|
|
func (b *fixupBody) Content(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Diagnostics) {
|
|
schema = b.effectiveSchema(schema)
|
|
content, diags := b.original.Content(schema)
|
|
return b.fixupContent(content), diags
|
|
}
|
|
|
|
func (b *fixupBody) PartialContent(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Body, hcl.Diagnostics) {
|
|
schema = b.effectiveSchema(schema)
|
|
content, remain, diags := b.original.PartialContent(schema)
|
|
remain = &fixupBody{
|
|
original: remain,
|
|
schema: b.schema,
|
|
names: b.names,
|
|
}
|
|
return b.fixupContent(content), remain, diags
|
|
}
|
|
|
|
func (b *fixupBody) JustAttributes() (hcl.Attributes, hcl.Diagnostics) {
|
|
// FixUpBlockAttrs is not intended to be used in situations where we'd use
|
|
// JustAttributes, so we just pass this through verbatim to complete our
|
|
// implementation of hcl.Body.
|
|
return b.original.JustAttributes()
|
|
}
|
|
|
|
func (b *fixupBody) MissingItemRange() hcl.Range {
|
|
return b.original.MissingItemRange()
|
|
}
|
|
|
|
// effectiveSchema produces a derived *hcl.BodySchema by sniffing the body's
|
|
// content to determine whether the author has used attribute or block syntax
|
|
// for each of the ambigious attributes where both are permitted.
|
|
//
|
|
// The resulting schema will always contain all of the same names that are
|
|
// in the given schema, but some attribute schemas may instead be replaced by
|
|
// block header schemas.
|
|
func (b *fixupBody) effectiveSchema(given *hcl.BodySchema) *hcl.BodySchema {
|
|
return effectiveSchema(given, b.original, b.names, true)
|
|
}
|
|
|
|
func (b *fixupBody) fixupContent(content *hcl.BodyContent) *hcl.BodyContent {
|
|
var ret hcl.BodyContent
|
|
ret.Attributes = make(hcl.Attributes)
|
|
for name, attr := range content.Attributes {
|
|
ret.Attributes[name] = attr
|
|
}
|
|
blockAttrVals := make(map[string][]*hcl.Block)
|
|
for _, block := range content.Blocks {
|
|
if _, exists := b.names[block.Type]; exists {
|
|
// If we get here then we've found a block type whose instances need
|
|
// to be re-interpreted as a list-of-objects attribute. We'll gather
|
|
// those up and fix them up below.
|
|
blockAttrVals[block.Type] = append(blockAttrVals[block.Type], block)
|
|
continue
|
|
}
|
|
|
|
// We need to now re-wrap our inner body so it will be subject to the
|
|
// same attribute-as-block fixup when recursively decoded.
|
|
retBlock := *block // shallow copy
|
|
if blockS, ok := b.schema.BlockTypes[block.Type]; ok {
|
|
// Would be weird if not ok, but we'll allow it for robustness; body just won't be fixed up, then
|
|
retBlock.Body = FixUpBlockAttrs(retBlock.Body, &blockS.Block)
|
|
}
|
|
|
|
ret.Blocks = append(ret.Blocks, &retBlock)
|
|
}
|
|
// No we'll install synthetic attributes for each of our fixups. We can't
|
|
// do this exactly because HCL's information model expects an attribute
|
|
// to be a single decl but we have multiple separate blocks. We'll
|
|
// approximate things, then, by using only our first block for the source
|
|
// location information. (We are guaranteed at least one by the above logic.)
|
|
for name, blocks := range blockAttrVals {
|
|
ret.Attributes[name] = &hcl.Attribute{
|
|
Name: name,
|
|
Expr: &fixupBlocksExpr{
|
|
blocks: blocks,
|
|
ety: b.schema.Attributes[name].Type.ElementType(),
|
|
},
|
|
|
|
Range: blocks[0].DefRange,
|
|
NameRange: blocks[0].TypeRange,
|
|
}
|
|
}
|
|
|
|
ret.MissingItemRange = b.MissingItemRange()
|
|
return &ret
|
|
}
|
|
|
|
type fixupBlocksExpr struct {
|
|
blocks hcl.Blocks
|
|
ety cty.Type
|
|
}
|
|
|
|
func (e *fixupBlocksExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
|
|
// In order to produce a suitable value for our expression we need to
|
|
// now decode the whole descendent block structure under each of our block
|
|
// bodies.
|
|
//
|
|
// That requires us to do something rather strange: we must construct a
|
|
// synthetic block type schema derived from the element type of the
|
|
// attribute, thus inverting our usual direction of lowering a schema
|
|
// into an implied type. Because a type is less detailed than a schema,
|
|
// the result is imprecise and in particular will just consider all
|
|
// the attributes to be optional and let the provider eventually decide
|
|
// whether to return errors if they turn out to be null when required.
|
|
schema := SchemaForCtyElementType(e.ety) // this schema's ImpliedType will match e.ety
|
|
spec := schema.DecoderSpec()
|
|
|
|
vals := make([]cty.Value, len(e.blocks))
|
|
var diags hcl.Diagnostics
|
|
for i, block := range e.blocks {
|
|
body := FixUpBlockAttrs(block.Body, schema)
|
|
val, blockDiags := hcldec.Decode(body, spec, ctx)
|
|
diags = append(diags, blockDiags...)
|
|
if val == cty.NilVal {
|
|
val = cty.UnknownVal(e.ety)
|
|
}
|
|
vals[i] = val
|
|
}
|
|
if len(vals) == 0 {
|
|
return cty.ListValEmpty(e.ety), diags
|
|
}
|
|
return cty.ListVal(vals), diags
|
|
}
|
|
|
|
func (e *fixupBlocksExpr) Variables() []hcl.Traversal {
|
|
var ret []hcl.Traversal
|
|
schema := SchemaForCtyElementType(e.ety)
|
|
spec := schema.DecoderSpec()
|
|
for _, block := range e.blocks {
|
|
ret = append(ret, hcldec.Variables(block.Body, spec)...)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
func (e *fixupBlocksExpr) Range() hcl.Range {
|
|
// This is not really an appropriate range for the expression but it's
|
|
// the best we can do from here.
|
|
return e.blocks[0].DefRange
|
|
}
|
|
|
|
func (e *fixupBlocksExpr) StartRange() hcl.Range {
|
|
return e.blocks[0].DefRange
|
|
}
|