opentofu/config/config.go
Martin Atkins 39e609d5fd vendor: switch to HCL 2.0 in the HCL repository
Previously we were using the experimental HCL 2 repository, but now we'll
shift over to the v2 import path within the main HCL repository as part of
actually releasing HCL 2.0 as stable.

This is a mechanical search/replace to the new import paths. It also
switches to the v2.0.0 release of HCL, which includes some new code that
Terraform didn't previously have but should not change any behavior that
matters for Terraform's purposes.

For the moment the experimental HCL2 repository is still an indirect
dependency via terraform-config-inspect, so it remains in our go.sum and
vendor directories for the moment. Because terraform-config-inspect uses
a much smaller subset of the HCL2 functionality, this does still manage
to prune the vendor directory a little. A subsequent release of
terraform-config-inspect should allow us to completely remove that old
repository in a future commit.
2019-10-02 15:10:21 -07:00

1172 lines
28 KiB
Go

// The config package is responsible for loading and validating the
// configuration.
package config
import (
"fmt"
"regexp"
"strconv"
"strings"
hcl2 "github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hil/ast"
"github.com/hashicorp/terraform/helper/hilmapstructure"
"github.com/hashicorp/terraform/plugin/discovery"
"github.com/hashicorp/terraform/tfdiags"
"github.com/mitchellh/reflectwalk"
)
// NameRegexp is the regular expression that all names (modules, providers,
// resources, etc.) must follow.
var NameRegexp = regexp.MustCompile(`(?i)\A[A-Z0-9_][A-Z0-9\-\_]*\z`)
// Config is the configuration that comes from loading a collection
// of Terraform templates.
type Config struct {
// Dir is the path to the directory where this configuration was
// loaded from. If it is blank, this configuration wasn't loaded from
// any meaningful directory.
Dir string
Terraform *Terraform
Atlas *AtlasConfig
Modules []*Module
ProviderConfigs []*ProviderConfig
Resources []*Resource
Variables []*Variable
Locals []*Local
Outputs []*Output
// The fields below can be filled in by loaders for validation
// purposes.
unknownKeys []string
}
// AtlasConfig is the configuration for building in HashiCorp's Atlas.
type AtlasConfig struct {
Name string
Include []string
Exclude []string
}
// Module is a module used within a configuration.
//
// This does not represent a module itself, this represents a module
// call-site within an existing configuration.
type Module struct {
Name string
Source string
Version string
Providers map[string]string
RawConfig *RawConfig
}
// ProviderConfig is the configuration for a resource provider.
//
// For example, Terraform needs to set the AWS access keys for the AWS
// resource provider.
type ProviderConfig struct {
Name string
Alias string
Version string
RawConfig *RawConfig
}
// A resource represents a single Terraform resource in the configuration.
// A Terraform resource is something that supports some or all of the
// usual "create, read, update, delete" operations, depending on
// the given Mode.
type Resource struct {
Mode ResourceMode // which operations the resource supports
Name string
Type string
RawCount *RawConfig
RawConfig *RawConfig
Provisioners []*Provisioner
Provider string
DependsOn []string
Lifecycle ResourceLifecycle
}
// Copy returns a copy of this Resource. Helpful for avoiding shared
// config pointers across multiple pieces of the graph that need to do
// interpolation.
func (r *Resource) Copy() *Resource {
n := &Resource{
Mode: r.Mode,
Name: r.Name,
Type: r.Type,
RawCount: r.RawCount.Copy(),
RawConfig: r.RawConfig.Copy(),
Provisioners: make([]*Provisioner, 0, len(r.Provisioners)),
Provider: r.Provider,
DependsOn: make([]string, len(r.DependsOn)),
Lifecycle: *r.Lifecycle.Copy(),
}
for _, p := range r.Provisioners {
n.Provisioners = append(n.Provisioners, p.Copy())
}
copy(n.DependsOn, r.DependsOn)
return n
}
// ResourceLifecycle is used to store the lifecycle tuning parameters
// to allow customized behavior
type ResourceLifecycle struct {
CreateBeforeDestroy bool `mapstructure:"create_before_destroy"`
PreventDestroy bool `mapstructure:"prevent_destroy"`
IgnoreChanges []string `mapstructure:"ignore_changes"`
}
// Copy returns a copy of this ResourceLifecycle
func (r *ResourceLifecycle) Copy() *ResourceLifecycle {
n := &ResourceLifecycle{
CreateBeforeDestroy: r.CreateBeforeDestroy,
PreventDestroy: r.PreventDestroy,
IgnoreChanges: make([]string, len(r.IgnoreChanges)),
}
copy(n.IgnoreChanges, r.IgnoreChanges)
return n
}
// Provisioner is a configured provisioner step on a resource.
type Provisioner struct {
Type string
RawConfig *RawConfig
ConnInfo *RawConfig
When ProvisionerWhen
OnFailure ProvisionerOnFailure
}
// Copy returns a copy of this Provisioner
func (p *Provisioner) Copy() *Provisioner {
return &Provisioner{
Type: p.Type,
RawConfig: p.RawConfig.Copy(),
ConnInfo: p.ConnInfo.Copy(),
When: p.When,
OnFailure: p.OnFailure,
}
}
// Variable is a module argument defined within the configuration.
type Variable struct {
Name string
DeclaredType string `mapstructure:"type"`
Default interface{}
Description string
}
// Local is a local value defined within the configuration.
type Local struct {
Name string
RawConfig *RawConfig
}
// Output is an output defined within the configuration. An output is
// resulting data that is highlighted by Terraform when finished. An
// output marked Sensitive will be output in a masked form following
// application, but will still be available in state.
type Output struct {
Name string
DependsOn []string
Description string
Sensitive bool
RawConfig *RawConfig
}
// VariableType is the type of value a variable is holding, and returned
// by the Type() function on variables.
type VariableType byte
const (
VariableTypeUnknown VariableType = iota
VariableTypeString
VariableTypeList
VariableTypeMap
)
func (v VariableType) Printable() string {
switch v {
case VariableTypeString:
return "string"
case VariableTypeMap:
return "map"
case VariableTypeList:
return "list"
default:
return "unknown"
}
}
// ProviderConfigName returns the name of the provider configuration in
// the given mapping that maps to the proper provider configuration
// for this resource.
func ProviderConfigName(t string, pcs []*ProviderConfig) string {
lk := ""
for _, v := range pcs {
k := v.Name
if strings.HasPrefix(t, k) && len(k) > len(lk) {
lk = k
}
}
return lk
}
// A unique identifier for this module.
func (r *Module) Id() string {
return fmt.Sprintf("%s", r.Name)
}
// Count returns the count of this resource.
func (r *Resource) Count() (int, error) {
raw := r.RawCount.Value()
count, ok := r.RawCount.Value().(string)
if !ok {
return 0, fmt.Errorf(
"expected count to be a string or int, got %T", raw)
}
v, err := strconv.ParseInt(count, 0, 0)
if err != nil {
return 0, fmt.Errorf(
"cannot parse %q as an integer",
count,
)
}
return int(v), nil
}
// A unique identifier for this resource.
func (r *Resource) Id() string {
switch r.Mode {
case ManagedResourceMode:
return fmt.Sprintf("%s.%s", r.Type, r.Name)
case DataResourceMode:
return fmt.Sprintf("data.%s.%s", r.Type, r.Name)
default:
panic(fmt.Errorf("unknown resource mode %s", r.Mode))
}
}
// Validate does some basic semantic checking of the configuration.
func (c *Config) Validate() tfdiags.Diagnostics {
if c == nil {
return nil
}
var diags tfdiags.Diagnostics
for _, k := range c.unknownKeys {
diags = diags.Append(
fmt.Errorf("Unknown root level key: %s", k),
)
}
// Validate the Terraform config
if tf := c.Terraform; tf != nil {
errs := c.Terraform.Validate()
for _, err := range errs {
diags = diags.Append(err)
}
}
vars := c.InterpolatedVariables()
varMap := make(map[string]*Variable)
for _, v := range c.Variables {
if _, ok := varMap[v.Name]; ok {
diags = diags.Append(fmt.Errorf(
"Variable '%s': duplicate found. Variable names must be unique.",
v.Name,
))
}
varMap[v.Name] = v
}
for k, _ := range varMap {
if !NameRegexp.MatchString(k) {
diags = diags.Append(fmt.Errorf(
"variable %q: variable name must match regular expression %s",
k, NameRegexp,
))
}
}
for _, v := range c.Variables {
if v.Type() == VariableTypeUnknown {
diags = diags.Append(fmt.Errorf(
"Variable '%s': must be a string or a map",
v.Name,
))
continue
}
interp := false
fn := func(n ast.Node) (interface{}, error) {
// LiteralNode is a literal string (outside of a ${ ... } sequence).
// interpolationWalker skips most of these. but in particular it
// visits those that have escaped sequences (like $${foo}) as a
// signal that *some* processing is required on this string. For
// our purposes here though, this is fine and not an interpolation.
if _, ok := n.(*ast.LiteralNode); !ok {
interp = true
}
return "", nil
}
w := &interpolationWalker{F: fn}
if v.Default != nil {
if err := reflectwalk.Walk(v.Default, w); err == nil {
if interp {
diags = diags.Append(fmt.Errorf(
"variable %q: default may not contain interpolations",
v.Name,
))
}
}
}
}
// Check for references to user variables that do not actually
// exist and record those errors.
for source, vs := range vars {
for _, v := range vs {
uv, ok := v.(*UserVariable)
if !ok {
continue
}
if _, ok := varMap[uv.Name]; !ok {
diags = diags.Append(fmt.Errorf(
"%s: unknown variable referenced: '%s'; define it with a 'variable' block",
source,
uv.Name,
))
}
}
}
// Check that all count variables are valid.
for source, vs := range vars {
for _, rawV := range vs {
switch v := rawV.(type) {
case *CountVariable:
if v.Type == CountValueInvalid {
diags = diags.Append(fmt.Errorf(
"%s: invalid count variable: %s",
source,
v.FullKey(),
))
}
case *PathVariable:
if v.Type == PathValueInvalid {
diags = diags.Append(fmt.Errorf(
"%s: invalid path variable: %s",
source,
v.FullKey(),
))
}
}
}
}
// Check that providers aren't declared multiple times and that their
// version constraints, where present, are syntactically valid.
providerSet := make(map[string]bool)
for _, p := range c.ProviderConfigs {
name := p.FullName()
if _, ok := providerSet[name]; ok {
diags = diags.Append(fmt.Errorf(
"provider.%s: multiple configurations present; only one configuration is allowed per provider",
name,
))
continue
}
if p.Version != "" {
_, err := discovery.ConstraintStr(p.Version).Parse()
if err != nil {
diags = diags.Append(&hcl2.Diagnostic{
Severity: hcl2.DiagError,
Summary: "Invalid provider version constraint",
Detail: fmt.Sprintf(
"The value %q given for provider.%s is not a valid version constraint.",
p.Version, name,
),
// TODO: include a "Subject" source reference in here,
// once the config loader is able to retain source
// location information.
})
}
}
providerSet[name] = true
}
// Check that all references to modules are valid
modules := make(map[string]*Module)
dupped := make(map[string]struct{})
for _, m := range c.Modules {
// Check for duplicates
if _, ok := modules[m.Id()]; ok {
if _, ok := dupped[m.Id()]; !ok {
dupped[m.Id()] = struct{}{}
diags = diags.Append(fmt.Errorf(
"module %q: module repeated multiple times",
m.Id(),
))
}
// Already seen this module, just skip it
continue
}
modules[m.Id()] = m
// Check that the source has no interpolations
rc, err := NewRawConfig(map[string]interface{}{
"root": m.Source,
})
if err != nil {
diags = diags.Append(fmt.Errorf(
"module %q: module source error: %s",
m.Id(), err,
))
} else if len(rc.Interpolations) > 0 {
diags = diags.Append(fmt.Errorf(
"module %q: module source cannot contain interpolations",
m.Id(),
))
}
// Check that the name matches our regexp
if !NameRegexp.Match([]byte(m.Name)) {
diags = diags.Append(fmt.Errorf(
"module %q: module name must be a letter or underscore followed by only letters, numbers, dashes, and underscores",
m.Id(),
))
}
// Check that the configuration can all be strings, lists or maps
raw := make(map[string]interface{})
for k, v := range m.RawConfig.Raw {
var strVal string
if err := hilmapstructure.WeakDecode(v, &strVal); err == nil {
raw[k] = strVal
continue
}
var mapVal map[string]interface{}
if err := hilmapstructure.WeakDecode(v, &mapVal); err == nil {
raw[k] = mapVal
continue
}
var sliceVal []interface{}
if err := hilmapstructure.WeakDecode(v, &sliceVal); err == nil {
raw[k] = sliceVal
continue
}
diags = diags.Append(fmt.Errorf(
"module %q: argument %s must have a string, list, or map value",
m.Id(), k,
))
}
// Check for invalid count variables
for _, v := range m.RawConfig.Variables {
switch v.(type) {
case *CountVariable:
diags = diags.Append(fmt.Errorf(
"module %q: count variables are only valid within resources",
m.Name,
))
case *SelfVariable:
diags = diags.Append(fmt.Errorf(
"module %q: self variables are only valid within resources",
m.Name,
))
}
}
// Update the raw configuration to only contain the string values
m.RawConfig, err = NewRawConfig(raw)
if err != nil {
diags = diags.Append(fmt.Errorf(
"%s: can't initialize configuration: %s",
m.Id(), err,
))
}
// check that all named providers actually exist
for _, p := range m.Providers {
if !providerSet[p] {
diags = diags.Append(fmt.Errorf(
"module %q: cannot pass non-existent provider %q",
m.Name, p,
))
}
}
}
dupped = nil
// Check that all variables for modules reference modules that
// exist.
for source, vs := range vars {
for _, v := range vs {
mv, ok := v.(*ModuleVariable)
if !ok {
continue
}
if _, ok := modules[mv.Name]; !ok {
diags = diags.Append(fmt.Errorf(
"%s: unknown module referenced: %s",
source, mv.Name,
))
}
}
}
// Check that all references to resources are valid
resources := make(map[string]*Resource)
dupped = make(map[string]struct{})
for _, r := range c.Resources {
if _, ok := resources[r.Id()]; ok {
if _, ok := dupped[r.Id()]; !ok {
dupped[r.Id()] = struct{}{}
diags = diags.Append(fmt.Errorf(
"%s: resource repeated multiple times",
r.Id(),
))
}
}
resources[r.Id()] = r
}
dupped = nil
// Validate resources
for n, r := range resources {
// Verify count variables
for _, v := range r.RawCount.Variables {
switch v.(type) {
case *CountVariable:
diags = diags.Append(fmt.Errorf(
"%s: resource count can't reference count variable: %s",
n, v.FullKey(),
))
case *SimpleVariable:
diags = diags.Append(fmt.Errorf(
"%s: resource count can't reference variable: %s",
n, v.FullKey(),
))
// Good
case *ModuleVariable:
case *ResourceVariable:
case *TerraformVariable:
case *UserVariable:
case *LocalVariable:
default:
diags = diags.Append(fmt.Errorf(
"Internal error. Unknown type in count var in %s: %T",
n, v,
))
}
}
if !r.RawCount.couldBeInteger() {
diags = diags.Append(fmt.Errorf(
"%s: resource count must be an integer", n,
))
}
r.RawCount.init()
// Validate DependsOn
for _, err := range c.validateDependsOn(n, r.DependsOn, resources, modules) {
diags = diags.Append(err)
}
// Verify provisioners
for _, p := range r.Provisioners {
// This validation checks that there are no splat variables
// referencing ourself. This currently is not allowed.
for _, v := range p.ConnInfo.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
diags = diags.Append(fmt.Errorf(
"%s: connection info cannot contain splat variable referencing itself",
n,
))
break
}
}
for _, v := range p.RawConfig.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
diags = diags.Append(fmt.Errorf(
"%s: connection info cannot contain splat variable referencing itself",
n,
))
break
}
}
// Check for invalid when/onFailure values, though this should be
// picked up by the loader we check here just in case.
if p.When == ProvisionerWhenInvalid {
diags = diags.Append(fmt.Errorf(
"%s: provisioner 'when' value is invalid", n,
))
}
if p.OnFailure == ProvisionerOnFailureInvalid {
diags = diags.Append(fmt.Errorf(
"%s: provisioner 'on_failure' value is invalid", n,
))
}
}
// Verify ignore_changes contains valid entries
for _, v := range r.Lifecycle.IgnoreChanges {
if strings.Contains(v, "*") && v != "*" {
diags = diags.Append(fmt.Errorf(
"%s: ignore_changes does not support using a partial string together with a wildcard: %s",
n, v,
))
}
}
// Verify ignore_changes has no interpolations
rc, err := NewRawConfig(map[string]interface{}{
"root": r.Lifecycle.IgnoreChanges,
})
if err != nil {
diags = diags.Append(fmt.Errorf(
"%s: lifecycle ignore_changes error: %s",
n, err,
))
} else if len(rc.Interpolations) > 0 {
diags = diags.Append(fmt.Errorf(
"%s: lifecycle ignore_changes cannot contain interpolations",
n,
))
}
// If it is a data source then it can't have provisioners
if r.Mode == DataResourceMode {
if _, ok := r.RawConfig.Raw["provisioner"]; ok {
diags = diags.Append(fmt.Errorf(
"%s: data sources cannot have provisioners",
n,
))
}
}
}
for source, vs := range vars {
for _, v := range vs {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
id := rv.ResourceId()
if _, ok := resources[id]; !ok {
diags = diags.Append(fmt.Errorf(
"%s: unknown resource '%s' referenced in variable %s",
source,
id,
rv.FullKey(),
))
continue
}
}
}
// Check that all locals are valid
{
found := make(map[string]struct{})
for _, l := range c.Locals {
if _, ok := found[l.Name]; ok {
diags = diags.Append(fmt.Errorf(
"%s: duplicate local. local value names must be unique",
l.Name,
))
continue
}
found[l.Name] = struct{}{}
for _, v := range l.RawConfig.Variables {
if _, ok := v.(*CountVariable); ok {
diags = diags.Append(fmt.Errorf(
"local %s: count variables are only valid within resources", l.Name,
))
}
}
}
}
// Check that all outputs are valid
{
found := make(map[string]struct{})
for _, o := range c.Outputs {
// Verify the output is new
if _, ok := found[o.Name]; ok {
diags = diags.Append(fmt.Errorf(
"output %q: an output of this name was already defined",
o.Name,
))
continue
}
found[o.Name] = struct{}{}
var invalidKeys []string
valueKeyFound := false
for k := range o.RawConfig.Raw {
if k == "value" {
valueKeyFound = true
continue
}
if k == "sensitive" {
if sensitive, ok := o.RawConfig.config[k].(bool); ok {
if sensitive {
o.Sensitive = true
}
continue
}
diags = diags.Append(fmt.Errorf(
"output %q: value for 'sensitive' must be boolean",
o.Name,
))
continue
}
if k == "description" {
if desc, ok := o.RawConfig.config[k].(string); ok {
o.Description = desc
continue
}
diags = diags.Append(fmt.Errorf(
"output %q: value for 'description' must be string",
o.Name,
))
continue
}
invalidKeys = append(invalidKeys, k)
}
if len(invalidKeys) > 0 {
diags = diags.Append(fmt.Errorf(
"output %q: invalid keys: %s",
o.Name, strings.Join(invalidKeys, ", "),
))
}
if !valueKeyFound {
diags = diags.Append(fmt.Errorf(
"output %q: missing required 'value' argument", o.Name,
))
}
for _, v := range o.RawConfig.Variables {
if _, ok := v.(*CountVariable); ok {
diags = diags.Append(fmt.Errorf(
"output %q: count variables are only valid within resources",
o.Name,
))
}
}
// Detect a common mistake of using a "count"ed resource in
// an output value without using the splat or index form.
// Prior to 0.11 this error was silently ignored, but outputs
// now have their errors checked like all other contexts.
//
// TODO: Remove this in 0.12.
for _, v := range o.RawConfig.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
// If the variable seems to be treating the referenced
// resource as a singleton (no count specified) then
// we'll check to make sure it is indeed a singleton.
// It's a warning if not.
if rv.Multi || rv.Index != 0 {
// This reference is treating the resource as a
// multi-resource, so the warning doesn't apply.
continue
}
for _, r := range c.Resources {
if r.Id() != rv.ResourceId() {
continue
}
// We test specifically for the raw string "1" here
// because we _do_ want to generate this warning if
// the user has provided an expression that happens
// to return 1 right now, to catch situations where
// a count might dynamically be set to something
// other than 1 and thus splat syntax is still needed
// to be safe.
if r.RawCount != nil && r.RawCount.Raw != nil && r.RawCount.Raw["count"] != "1" && rv.Field != "count" {
diags = diags.Append(tfdiags.SimpleWarning(fmt.Sprintf(
"output %q: must use splat syntax to access %s attribute %q, because it has \"count\" set; use %s.*.%s to obtain a list of the attributes across all instances",
o.Name,
r.Id(), rv.Field,
r.Id(), rv.Field,
)))
}
}
}
}
}
// Validate the self variable
for source, rc := range c.rawConfigs() {
// Ignore provisioners. This is a pretty brittle way to do this,
// but better than also repeating all the resources.
if strings.Contains(source, "provision") {
continue
}
for _, v := range rc.Variables {
if _, ok := v.(*SelfVariable); ok {
diags = diags.Append(fmt.Errorf(
"%s: cannot contain self-reference %s",
source, v.FullKey(),
))
}
}
}
return diags
}
// InterpolatedVariables is a helper that returns a mapping of all the interpolated
// variables within the configuration. This is used to verify references
// are valid in the Validate step.
func (c *Config) InterpolatedVariables() map[string][]InterpolatedVariable {
result := make(map[string][]InterpolatedVariable)
for source, rc := range c.rawConfigs() {
for _, v := range rc.Variables {
result[source] = append(result[source], v)
}
}
return result
}
// rawConfigs returns all of the RawConfigs that are available keyed by
// a human-friendly source.
func (c *Config) rawConfigs() map[string]*RawConfig {
result := make(map[string]*RawConfig)
for _, m := range c.Modules {
source := fmt.Sprintf("module '%s'", m.Name)
result[source] = m.RawConfig
}
for _, pc := range c.ProviderConfigs {
source := fmt.Sprintf("provider config '%s'", pc.Name)
result[source] = pc.RawConfig
}
for _, rc := range c.Resources {
source := fmt.Sprintf("resource '%s'", rc.Id())
result[source+" count"] = rc.RawCount
result[source+" config"] = rc.RawConfig
for i, p := range rc.Provisioners {
subsource := fmt.Sprintf(
"%s provisioner %s (#%d)",
source, p.Type, i+1)
result[subsource] = p.RawConfig
}
}
for _, o := range c.Outputs {
source := fmt.Sprintf("output '%s'", o.Name)
result[source] = o.RawConfig
}
return result
}
func (c *Config) validateDependsOn(
n string,
v []string,
resources map[string]*Resource,
modules map[string]*Module) []error {
// Verify depends on points to resources that all exist
var errs []error
for _, d := range v {
// Check if we contain interpolations
rc, err := NewRawConfig(map[string]interface{}{
"value": d,
})
if err == nil && len(rc.Variables) > 0 {
errs = append(errs, fmt.Errorf(
"%s: depends on value cannot contain interpolations: %s",
n, d))
continue
}
// If it is a module, verify it is a module
if strings.HasPrefix(d, "module.") {
name := d[len("module."):]
if _, ok := modules[name]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-existent module '%s'",
n, name))
}
continue
}
// Check resources
if _, ok := resources[d]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-existent resource '%s'",
n, d))
}
}
return errs
}
func (m *Module) mergerName() string {
return m.Id()
}
func (m *Module) mergerMerge(other merger) merger {
m2 := other.(*Module)
result := *m
result.Name = m2.Name
result.RawConfig = result.RawConfig.merge(m2.RawConfig)
if m2.Source != "" {
result.Source = m2.Source
}
return &result
}
func (o *Output) mergerName() string {
return o.Name
}
func (o *Output) mergerMerge(m merger) merger {
o2 := m.(*Output)
result := *o
result.Name = o2.Name
result.Description = o2.Description
result.RawConfig = result.RawConfig.merge(o2.RawConfig)
result.Sensitive = o2.Sensitive
result.DependsOn = o2.DependsOn
return &result
}
func (c *ProviderConfig) GoString() string {
return fmt.Sprintf("*%#v", *c)
}
func (c *ProviderConfig) FullName() string {
if c.Alias == "" {
return c.Name
}
return fmt.Sprintf("%s.%s", c.Name, c.Alias)
}
func (c *ProviderConfig) mergerName() string {
return c.Name
}
func (c *ProviderConfig) mergerMerge(m merger) merger {
c2 := m.(*ProviderConfig)
result := *c
result.Name = c2.Name
result.RawConfig = result.RawConfig.merge(c2.RawConfig)
if c2.Alias != "" {
result.Alias = c2.Alias
}
return &result
}
func (r *Resource) mergerName() string {
return r.Id()
}
func (r *Resource) mergerMerge(m merger) merger {
r2 := m.(*Resource)
result := *r
result.Mode = r2.Mode
result.Name = r2.Name
result.Type = r2.Type
result.RawConfig = result.RawConfig.merge(r2.RawConfig)
if r2.RawCount.Value() != "1" {
result.RawCount = r2.RawCount
}
if len(r2.Provisioners) > 0 {
result.Provisioners = r2.Provisioners
}
return &result
}
// Merge merges two variables to create a new third variable.
func (v *Variable) Merge(v2 *Variable) *Variable {
// Shallow copy the variable
result := *v
// The names should be the same, but the second name always wins.
result.Name = v2.Name
if v2.DeclaredType != "" {
result.DeclaredType = v2.DeclaredType
}
if v2.Default != nil {
result.Default = v2.Default
}
if v2.Description != "" {
result.Description = v2.Description
}
return &result
}
var typeStringMap = map[string]VariableType{
"string": VariableTypeString,
"map": VariableTypeMap,
"list": VariableTypeList,
}
// Type returns the type of variable this is.
func (v *Variable) Type() VariableType {
if v.DeclaredType != "" {
declaredType, ok := typeStringMap[v.DeclaredType]
if !ok {
return VariableTypeUnknown
}
return declaredType
}
return v.inferTypeFromDefault()
}
// ValidateTypeAndDefault ensures that default variable value is compatible
// with the declared type (if one exists), and that the type is one which is
// known to Terraform
func (v *Variable) ValidateTypeAndDefault() error {
// If an explicit type is declared, ensure it is valid
if v.DeclaredType != "" {
if _, ok := typeStringMap[v.DeclaredType]; !ok {
validTypes := []string{}
for k := range typeStringMap {
validTypes = append(validTypes, k)
}
return fmt.Errorf(
"Variable '%s' type must be one of [%s] - '%s' is not a valid type",
v.Name,
strings.Join(validTypes, ", "),
v.DeclaredType,
)
}
}
if v.DeclaredType == "" || v.Default == nil {
return nil
}
if v.inferTypeFromDefault() != v.Type() {
return fmt.Errorf("'%s' has a default value which is not of type '%s' (got '%s')",
v.Name, v.DeclaredType, v.inferTypeFromDefault().Printable())
}
return nil
}
func (v *Variable) mergerName() string {
return v.Name
}
func (v *Variable) mergerMerge(m merger) merger {
return v.Merge(m.(*Variable))
}
// Required tests whether a variable is required or not.
func (v *Variable) Required() bool {
return v.Default == nil
}
// inferTypeFromDefault contains the logic for the old method of inferring
// variable types - we can also use this for validating that the declared
// type matches the type of the default value
func (v *Variable) inferTypeFromDefault() VariableType {
if v.Default == nil {
return VariableTypeString
}
var s string
if err := hilmapstructure.WeakDecode(v.Default, &s); err == nil {
v.Default = s
return VariableTypeString
}
var m map[string]interface{}
if err := hilmapstructure.WeakDecode(v.Default, &m); err == nil {
v.Default = m
return VariableTypeMap
}
var l []interface{}
if err := hilmapstructure.WeakDecode(v.Default, &l); err == nil {
v.Default = l
return VariableTypeList
}
return VariableTypeUnknown
}
func (m ResourceMode) Taintable() bool {
switch m {
case ManagedResourceMode:
return true
case DataResourceMode:
return false
default:
panic(fmt.Errorf("unsupported ResourceMode value %s", m))
}
}