mirror of
https://github.com/opentofu/opentofu.git
synced 2025-01-27 17:06:27 -06:00
b0da5b1ce5
We've not been using HIL in the main codepaths since Terraform 0.12, but some references to it (and some supporting functionality in Terraform) stuck around due to interactions with types we'd kept around to support legacy shims. However, removing the configs.RawConfig field from terraform.ResourceConfig disconnects that subtree of dependencies from everything else, allowing us to remove it. This is safe because the only remaining uses of terraform.ResourceConfig are shims from values that were already evaluated using the HCL 2 API, and thus they never need the "just in time" HIL evaluation that ResourceConfig.interpolateForce used to do. We also had some HIL references in configs/hcl2shim that were previously in support of the "terraform 0.12upgrade" command, but the implementation of that command is now removed. There was one remaining reference to HIL in a now-unused function in the helper/schema package, which I removed entirely here. This then allows us to remove the HIL dependency entirely, and also to clean up some remaining old remants of the legacy "config" package that we'd recently moved into the "configs" package pending further pruning.
231 lines
6.8 KiB
Go
231 lines
6.8 KiB
Go
package hcl2shim
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/zclconf/go-cty/cty"
|
|
|
|
"github.com/hashicorp/terraform/configs/configschema"
|
|
)
|
|
|
|
// UnknownVariableValue is a sentinel value that can be used
|
|
// to denote that the value of a variable is unknown at this time.
|
|
// RawConfig uses this information to build up data about
|
|
// unknown keys.
|
|
const UnknownVariableValue = "74D93920-ED26-11E3-AC10-0800200C9A66"
|
|
|
|
// ConfigValueFromHCL2Block is like ConfigValueFromHCL2 but it works only for
|
|
// known object values and uses the provided block schema to perform some
|
|
// additional normalization to better mimic the shape of value that the old
|
|
// HCL1/HIL-based codepaths would've produced.
|
|
//
|
|
// In particular, it discards the collections that we use to represent nested
|
|
// blocks (other than NestingSingle) if they are empty, which better mimics
|
|
// the HCL1 behavior because HCL1 had no knowledge of the schema and so didn't
|
|
// know that an unspecified block _could_ exist.
|
|
//
|
|
// The given object value must conform to the schema's implied type or this
|
|
// function will panic or produce incorrect results.
|
|
//
|
|
// This is primarily useful for the final transition from new-style values to
|
|
// terraform.ResourceConfig before calling to a legacy provider, since
|
|
// helper/schema (the old provider SDK) is particularly sensitive to these
|
|
// subtle differences within its validation code.
|
|
func ConfigValueFromHCL2Block(v cty.Value, schema *configschema.Block) map[string]interface{} {
|
|
if v.IsNull() {
|
|
return nil
|
|
}
|
|
if !v.IsKnown() {
|
|
panic("ConfigValueFromHCL2Block used with unknown value")
|
|
}
|
|
if !v.Type().IsObjectType() {
|
|
panic(fmt.Sprintf("ConfigValueFromHCL2Block used with non-object value %#v", v))
|
|
}
|
|
|
|
atys := v.Type().AttributeTypes()
|
|
ret := make(map[string]interface{})
|
|
|
|
for name := range schema.Attributes {
|
|
if _, exists := atys[name]; !exists {
|
|
continue
|
|
}
|
|
|
|
av := v.GetAttr(name)
|
|
if av.IsNull() {
|
|
// Skip nulls altogether, to better mimic how HCL1 would behave
|
|
continue
|
|
}
|
|
ret[name] = ConfigValueFromHCL2(av)
|
|
}
|
|
|
|
for name, blockS := range schema.BlockTypes {
|
|
if _, exists := atys[name]; !exists {
|
|
continue
|
|
}
|
|
bv := v.GetAttr(name)
|
|
if !bv.IsKnown() {
|
|
ret[name] = UnknownVariableValue
|
|
continue
|
|
}
|
|
if bv.IsNull() {
|
|
continue
|
|
}
|
|
|
|
switch blockS.Nesting {
|
|
|
|
case configschema.NestingSingle, configschema.NestingGroup:
|
|
ret[name] = ConfigValueFromHCL2Block(bv, &blockS.Block)
|
|
|
|
case configschema.NestingList, configschema.NestingSet:
|
|
l := bv.LengthInt()
|
|
if l == 0 {
|
|
// skip empty collections to better mimic how HCL1 would behave
|
|
continue
|
|
}
|
|
|
|
elems := make([]interface{}, 0, l)
|
|
for it := bv.ElementIterator(); it.Next(); {
|
|
_, ev := it.Element()
|
|
if !ev.IsKnown() {
|
|
elems = append(elems, UnknownVariableValue)
|
|
continue
|
|
}
|
|
elems = append(elems, ConfigValueFromHCL2Block(ev, &blockS.Block))
|
|
}
|
|
ret[name] = elems
|
|
|
|
case configschema.NestingMap:
|
|
if bv.LengthInt() == 0 {
|
|
// skip empty collections to better mimic how HCL1 would behave
|
|
continue
|
|
}
|
|
|
|
elems := make(map[string]interface{})
|
|
for it := bv.ElementIterator(); it.Next(); {
|
|
ek, ev := it.Element()
|
|
if !ev.IsKnown() {
|
|
elems[ek.AsString()] = UnknownVariableValue
|
|
continue
|
|
}
|
|
elems[ek.AsString()] = ConfigValueFromHCL2Block(ev, &blockS.Block)
|
|
}
|
|
ret[name] = elems
|
|
}
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// ConfigValueFromHCL2 converts a value from HCL2 (really, from the cty dynamic
|
|
// types library that HCL2 uses) to a value type that matches what would've
|
|
// been produced from the HCL-based interpolator for an equivalent structure.
|
|
//
|
|
// This function will transform a cty null value into a Go nil value, which
|
|
// isn't a possible outcome of the HCL/HIL-based decoder and so callers may
|
|
// need to detect and reject any null values.
|
|
func ConfigValueFromHCL2(v cty.Value) interface{} {
|
|
if !v.IsKnown() {
|
|
return UnknownVariableValue
|
|
}
|
|
if v.IsNull() {
|
|
return nil
|
|
}
|
|
|
|
switch v.Type() {
|
|
case cty.Bool:
|
|
return v.True() // like HCL.BOOL
|
|
case cty.String:
|
|
return v.AsString() // like HCL token.STRING or token.HEREDOC
|
|
case cty.Number:
|
|
// We can't match HCL _exactly_ here because it distinguishes between
|
|
// int and float values, but we'll get as close as we can by using
|
|
// an int if the number is exactly representable, and a float if not.
|
|
// The conversion to float will force precision to that of a float64,
|
|
// which is potentially losing information from the specific number
|
|
// given, but no worse than what HCL would've done in its own conversion
|
|
// to float.
|
|
|
|
f := v.AsBigFloat()
|
|
if i, acc := f.Int64(); acc == big.Exact {
|
|
// if we're on a 32-bit system and the number is too big for 32-bit
|
|
// int then we'll fall through here and use a float64.
|
|
const MaxInt = int(^uint(0) >> 1)
|
|
const MinInt = -MaxInt - 1
|
|
if i <= int64(MaxInt) && i >= int64(MinInt) {
|
|
return int(i) // Like HCL token.NUMBER
|
|
}
|
|
}
|
|
|
|
f64, _ := f.Float64()
|
|
return f64 // like HCL token.FLOAT
|
|
}
|
|
|
|
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
|
|
l := make([]interface{}, 0, v.LengthInt())
|
|
it := v.ElementIterator()
|
|
for it.Next() {
|
|
_, ev := it.Element()
|
|
l = append(l, ConfigValueFromHCL2(ev))
|
|
}
|
|
return l
|
|
}
|
|
|
|
if v.Type().IsMapType() || v.Type().IsObjectType() {
|
|
l := make(map[string]interface{})
|
|
it := v.ElementIterator()
|
|
for it.Next() {
|
|
ek, ev := it.Element()
|
|
cv := ConfigValueFromHCL2(ev)
|
|
if cv != nil {
|
|
l[ek.AsString()] = cv
|
|
}
|
|
}
|
|
return l
|
|
}
|
|
|
|
// If we fall out here then we have some weird type that we haven't
|
|
// accounted for. This should never happen unless the caller is using
|
|
// capsule types, and we don't currently have any such types defined.
|
|
panic(fmt.Errorf("can't convert %#v to config value", v))
|
|
}
|
|
|
|
// HCL2ValueFromConfigValue is the opposite of configValueFromHCL2: it takes
|
|
// a value as would be returned from the old interpolator and turns it into
|
|
// a cty.Value so it can be used within, for example, an HCL2 EvalContext.
|
|
func HCL2ValueFromConfigValue(v interface{}) cty.Value {
|
|
if v == nil {
|
|
return cty.NullVal(cty.DynamicPseudoType)
|
|
}
|
|
if v == UnknownVariableValue {
|
|
return cty.DynamicVal
|
|
}
|
|
|
|
switch tv := v.(type) {
|
|
case bool:
|
|
return cty.BoolVal(tv)
|
|
case string:
|
|
return cty.StringVal(tv)
|
|
case int:
|
|
return cty.NumberIntVal(int64(tv))
|
|
case float64:
|
|
return cty.NumberFloatVal(tv)
|
|
case []interface{}:
|
|
vals := make([]cty.Value, len(tv))
|
|
for i, ev := range tv {
|
|
vals[i] = HCL2ValueFromConfigValue(ev)
|
|
}
|
|
return cty.TupleVal(vals)
|
|
case map[string]interface{}:
|
|
vals := map[string]cty.Value{}
|
|
for k, ev := range tv {
|
|
vals[k] = HCL2ValueFromConfigValue(ev)
|
|
}
|
|
return cty.ObjectVal(vals)
|
|
default:
|
|
// HCL/HIL should never generate anything that isn't caught by
|
|
// the above, so if we get here something has gone very wrong.
|
|
panic(fmt.Errorf("can't convert %#v to cty.Value", v))
|
|
}
|
|
}
|