opentofu/terraform/transform_reference.go
James Bardin 35c6a4e89d add DestroyValueReferenceTransformer
DestroyValueReferenceTransformer is used during destroy to reverse the
edges for output and local values. Because destruction is going to
remove these from the state, nodes that depend on their value need to be
visited first.
2017-10-02 16:20:29 -04:00

355 lines
9.2 KiB
Go

package terraform
import (
"fmt"
"log"
"strings"
"github.com/hashicorp/terraform/config"
"github.com/hashicorp/terraform/dag"
)
// GraphNodeReferenceable must be implemented by any node that represents
// a Terraform thing that can be referenced (resource, module, etc.).
//
// Even if the thing has no name, this should return an empty list. By
// implementing this and returning a non-nil result, you say that this CAN
// be referenced and other methods of referencing may still be possible (such
// as by path!)
type GraphNodeReferenceable interface {
// ReferenceableName is the name by which this can be referenced.
// This can be either just the type, or include the field. Example:
// "aws_instance.bar" or "aws_instance.bar.id".
ReferenceableName() []string
}
// GraphNodeReferencer must be implemented by nodes that reference other
// Terraform items and therefore depend on them.
type GraphNodeReferencer interface {
// References are the list of things that this node references. This
// can include fields or just the type, just like GraphNodeReferenceable
// above.
References() []string
}
// GraphNodeReferenceGlobal is an interface that can optionally be
// implemented. If ReferenceGlobal returns true, then the References()
// and ReferenceableName() must be _fully qualified_ with "module.foo.bar"
// etc.
//
// This allows a node to reference and be referenced by a specific name
// that may cross module boundaries. This can be very dangerous so use
// this wisely.
//
// The primary use case for this is module boundaries (variables coming in).
type GraphNodeReferenceGlobal interface {
// Set to true to signal that references and name are fully
// qualified. See the above docs for more information.
ReferenceGlobal() bool
}
// ReferenceTransformer is a GraphTransformer that connects all the
// nodes that reference each other in order to form the proper ordering.
type ReferenceTransformer struct{}
func (t *ReferenceTransformer) Transform(g *Graph) error {
// Build a reference map so we can efficiently look up the references
vs := g.Vertices()
m := NewReferenceMap(vs)
// Find the things that reference things and connect them
for _, v := range vs {
parents, _ := m.References(v)
parentsDbg := make([]string, len(parents))
for i, v := range parents {
parentsDbg[i] = dag.VertexName(v)
}
log.Printf(
"[DEBUG] ReferenceTransformer: %q references: %v",
dag.VertexName(v), parentsDbg)
for _, parent := range parents {
g.Connect(dag.BasicEdge(v, parent))
}
}
return nil
}
// DestroyReferenceTransformer is a GraphTransformer that reverses the edges
// for nodes that depend on an Output or Local value. Output and local nodes are
// removed during destroy, so anything which depends on them must be evaluated
// first. These can't be interpolated during destroy, so the stored value must
// be used anyway hence they don't need to be re-evaluated.
type DestroyValueReferenceTransformer struct{}
func (t *DestroyValueReferenceTransformer) Transform(g *Graph) error {
vs := g.Vertices()
for _, v := range vs {
switch v.(type) {
case *NodeApplyableOutput, *NodeLocal:
// OK
default:
continue
}
// reverse any incoming edges so that the value is removed last
for _, e := range g.EdgesTo(v) {
source := e.Source()
log.Printf("[TRACE] output dep: %s", dag.VertexName(source))
g.RemoveEdge(e)
g.Connect(&DestroyEdge{S: v, T: source})
}
}
return nil
}
// ReferenceMap is a structure that can be used to efficiently check
// for references on a graph.
type ReferenceMap struct {
// m is the mapping of referenceable name to list of verticies that
// implement that name. This is built on initialization.
references map[string][]dag.Vertex
referencedBy map[string][]dag.Vertex
}
// References returns the list of vertices that this vertex
// references along with any missing references.
func (m *ReferenceMap) References(v dag.Vertex) ([]dag.Vertex, []string) {
rn, ok := v.(GraphNodeReferencer)
if !ok {
return nil, nil
}
var matches []dag.Vertex
var missing []string
prefix := m.prefix(v)
for _, ns := range rn.References() {
found := false
for _, n := range strings.Split(ns, "/") {
n = prefix + n
parents, ok := m.references[n]
if !ok {
continue
}
// Mark that we found a match
found = true
// Make sure this isn't a self reference, which isn't included
selfRef := false
for _, p := range parents {
if p == v {
selfRef = true
break
}
}
if selfRef {
continue
}
matches = append(matches, parents...)
break
}
if !found {
missing = append(missing, ns)
}
}
return matches, missing
}
// ReferencedBy returns the list of vertices that reference the
// vertex passed in.
func (m *ReferenceMap) ReferencedBy(v dag.Vertex) []dag.Vertex {
rn, ok := v.(GraphNodeReferenceable)
if !ok {
return nil
}
var matches []dag.Vertex
prefix := m.prefix(v)
for _, n := range rn.ReferenceableName() {
n = prefix + n
children, ok := m.referencedBy[n]
if !ok {
continue
}
// Make sure this isn't a self reference, which isn't included
selfRef := false
for _, p := range children {
if p == v {
selfRef = true
break
}
}
if selfRef {
continue
}
matches = append(matches, children...)
}
return matches
}
func (m *ReferenceMap) prefix(v dag.Vertex) string {
// If the node is stating it is already fully qualified then
// we don't have to create the prefix!
if gn, ok := v.(GraphNodeReferenceGlobal); ok && gn.ReferenceGlobal() {
return ""
}
// Create the prefix based on the path
var prefix string
if pn, ok := v.(GraphNodeSubPath); ok {
if path := normalizeModulePath(pn.Path()); len(path) > 1 {
prefix = modulePrefixStr(path) + "."
}
}
return prefix
}
// NewReferenceMap is used to create a new reference map for the
// given set of vertices.
func NewReferenceMap(vs []dag.Vertex) *ReferenceMap {
var m ReferenceMap
// Build the lookup table
refMap := make(map[string][]dag.Vertex)
for _, v := range vs {
// We're only looking for referenceable nodes
rn, ok := v.(GraphNodeReferenceable)
if !ok {
continue
}
// Go through and cache them
prefix := m.prefix(v)
for _, n := range rn.ReferenceableName() {
n = prefix + n
refMap[n] = append(refMap[n], v)
}
// If there is a path, it is always referenceable by that. For
// example, if this is a referenceable thing at path []string{"foo"},
// then it can be referenced at "module.foo"
if pn, ok := v.(GraphNodeSubPath); ok {
for _, p := range ReferenceModulePath(pn.Path()) {
refMap[p] = append(refMap[p], v)
}
}
}
// Build the lookup table for referenced by
refByMap := make(map[string][]dag.Vertex)
for _, v := range vs {
// We're only looking for referenceable nodes
rn, ok := v.(GraphNodeReferencer)
if !ok {
continue
}
// Go through and cache them
prefix := m.prefix(v)
for _, n := range rn.References() {
n = prefix + n
refByMap[n] = append(refByMap[n], v)
}
}
m.references = refMap
m.referencedBy = refByMap
return &m
}
// Returns the reference name for a module path. The path "foo" would return
// "module.foo". If this is a deeply nested module, it will be every parent
// as well. For example: ["foo", "bar"] would return both "module.foo" and
// "module.foo.module.bar"
func ReferenceModulePath(p []string) []string {
p = normalizeModulePath(p)
if len(p) == 1 {
// Root, no name
return nil
}
result := make([]string, 0, len(p)-1)
for i := len(p); i > 1; i-- {
result = append(result, modulePrefixStr(p[:i]))
}
return result
}
// ReferencesFromConfig returns the references that a configuration has
// based on the interpolated variables in a configuration.
func ReferencesFromConfig(c *config.RawConfig) []string {
var result []string
for _, v := range c.Variables {
if r := ReferenceFromInterpolatedVar(v); len(r) > 0 {
result = append(result, r...)
}
}
return result
}
// ReferenceFromInterpolatedVar returns the reference from this variable,
// or an empty string if there is no reference.
func ReferenceFromInterpolatedVar(v config.InterpolatedVariable) []string {
switch v := v.(type) {
case *config.ModuleVariable:
return []string{fmt.Sprintf("module.%s.output.%s", v.Name, v.Field)}
case *config.ResourceVariable:
id := v.ResourceId()
// If we have a multi-reference (splat), then we depend on ALL
// resources with this type/name.
if v.Multi && v.Index == -1 {
return []string{fmt.Sprintf("%s.*", id)}
}
// Otherwise, we depend on a specific index.
idx := v.Index
if !v.Multi || v.Index == -1 {
idx = 0
}
// Depend on the index, as well as "N" which represents the
// un-expanded set of resources.
return []string{fmt.Sprintf("%s.%d/%s.N", id, idx, id)}
case *config.UserVariable:
return []string{fmt.Sprintf("var.%s", v.Name)}
case *config.LocalVariable:
return []string{fmt.Sprintf("local.%s", v.Name)}
default:
return nil
}
}
func modulePrefixStr(p []string) string {
parts := make([]string, 0, len(p)*2)
for _, p := range p[1:] {
parts = append(parts, "module", p)
}
return strings.Join(parts, ".")
}
func modulePrefixList(result []string, prefix string) []string {
if prefix != "" {
for i, v := range result {
result[i] = fmt.Sprintf("%s.%s", prefix, v)
}
}
return result
}