opentofu/terraform/node_resource_apply.go
James Bardin a2718e4f79 ignore errors interpolating RawCount during apply
If a count field references another count field which is interpolated
but is attached to a resource already in the state, the result of that
first interpolation will be lost when a plan is serialized. This is
because the result of the first interpolation is stored directly in the
module config, in an unexported config field.

This is not a general fix for the above situation, which would require
refactoring how counts are handles throughout the config. Ignoring the
error works, because in most cases the count will be properly
handled during the resource's interpolation.
2018-03-09 19:16:04 -05:00

401 lines
10 KiB
Go

package terraform
import (
"fmt"
"github.com/hashicorp/terraform/config"
)
// NodeApplyableResource represents a resource that is "applyable":
// it is ready to be applied and is represented by a diff.
type NodeApplyableResource struct {
*NodeAbstractResource
}
// GraphNodeCreator
func (n *NodeApplyableResource) CreateAddr() *ResourceAddress {
return n.NodeAbstractResource.Addr
}
// GraphNodeReferencer, overriding NodeAbstractResource
func (n *NodeApplyableResource) References() []string {
result := n.NodeAbstractResource.References()
// The "apply" side of a resource generally also depends on the
// destruction of its dependencies as well. For example, if a LB
// references a set of VMs with ${vm.foo.*.id}, then we must wait for
// the destruction so we get the newly updated list of VMs.
//
// The exception here is CBD. When CBD is set, we don't do this since
// it would create a cycle. By not creating a cycle, we require two
// applies since the first apply the creation step will use the OLD
// values (pre-destroy) and the second step will update.
//
// This is how Terraform behaved with "legacy" graphs (TF <= 0.7.x).
// We mimic that behavior here now and can improve upon it in the future.
//
// This behavior is tested in graph_build_apply_test.go to test ordering.
cbd := n.Config != nil && n.Config.Lifecycle.CreateBeforeDestroy
if !cbd {
// The "apply" side of a resource always depends on the destruction
// of all its dependencies in addition to the creation.
for _, v := range result {
result = append(result, v+".destroy")
}
}
return result
}
// GraphNodeEvalable
func (n *NodeApplyableResource) EvalTree() EvalNode {
addr := n.NodeAbstractResource.Addr
// stateId is the ID to put into the state
stateId := addr.stateId()
// Build the instance info. More of this will be populated during eval
info := &InstanceInfo{
Id: stateId,
Type: addr.Type,
}
// Build the resource for eval
resource := &Resource{
Name: addr.Name,
Type: addr.Type,
CountIndex: addr.Index,
}
if resource.CountIndex < 0 {
resource.CountIndex = 0
}
// Determine the dependencies for the state.
stateDeps := n.StateReferences()
// Eval info is different depending on what kind of resource this is
switch n.Config.Mode {
case config.ManagedResourceMode:
return n.evalTreeManagedResource(
stateId, info, resource, stateDeps,
)
case config.DataResourceMode:
return n.evalTreeDataResource(
stateId, info, resource, stateDeps)
default:
panic(fmt.Errorf("unsupported resource mode %s", n.Config.Mode))
}
}
func (n *NodeApplyableResource) evalTreeDataResource(
stateId string, info *InstanceInfo,
resource *Resource, stateDeps []string) EvalNode {
var provider ResourceProvider
var config *ResourceConfig
var diff *InstanceDiff
var state *InstanceState
return &EvalSequence{
Nodes: []EvalNode{
// Build the instance info
&EvalInstanceInfo{
Info: info,
},
// Get the saved diff for apply
&EvalReadDiff{
Name: stateId,
Diff: &diff,
},
// Stop here if we don't actually have a diff
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
if diff == nil {
return true, EvalEarlyExitError{}
}
if diff.GetAttributesLen() == 0 {
return true, EvalEarlyExitError{}
}
return true, nil
},
Then: EvalNoop{},
},
// Normally we interpolate count as a preparation step before
// a DynamicExpand, but an apply graph has pre-expanded nodes
// and so the count would otherwise never be interpolated.
//
// This is redundant when there are multiple instances created
// from the same config (count > 1) but harmless since the
// underlying structures have mutexes to make this concurrency-safe.
//
// In most cases this isn't actually needed because we dealt with
// all of the counts during the plan walk, but we do it here
// for completeness because other code assumes that the
// final count is always available during interpolation.
//
// Here we are just populating the interpolated value in-place
// inside this RawConfig object, like we would in
// NodeAbstractCountResource.
&EvalInterpolate{
Config: n.Config.RawCount,
ContinueOnErr: true,
},
// We need to re-interpolate the config here, rather than
// just using the diff's values directly, because we've
// potentially learned more variable values during the
// apply pass that weren't known when the diff was produced.
&EvalInterpolate{
Config: n.Config.RawConfig.Copy(),
Resource: resource,
Output: &config,
},
&EvalGetProvider{
Name: n.ResolvedProvider,
Output: &provider,
},
// Make a new diff with our newly-interpolated config.
&EvalReadDataDiff{
Info: info,
Config: &config,
Previous: &diff,
Provider: &provider,
Output: &diff,
},
&EvalReadDataApply{
Info: info,
Diff: &diff,
Provider: &provider,
Output: &state,
},
&EvalWriteState{
Name: stateId,
ResourceType: n.Config.Type,
Provider: n.ResolvedProvider,
Dependencies: stateDeps,
State: &state,
},
// Clear the diff now that we've applied it, so
// later nodes won't see a diff that's now a no-op.
&EvalWriteDiff{
Name: stateId,
Diff: nil,
},
&EvalUpdateStateHook{},
},
}
}
func (n *NodeApplyableResource) evalTreeManagedResource(
stateId string, info *InstanceInfo,
resource *Resource, stateDeps []string) EvalNode {
// Declare a bunch of variables that are used for state during
// evaluation. Most of this are written to by-address below.
var provider ResourceProvider
var diff, diffApply *InstanceDiff
var state *InstanceState
var resourceConfig *ResourceConfig
var err error
var createNew bool
var createBeforeDestroyEnabled bool
return &EvalSequence{
Nodes: []EvalNode{
// Build the instance info
&EvalInstanceInfo{
Info: info,
},
// Get the saved diff for apply
&EvalReadDiff{
Name: stateId,
Diff: &diffApply,
},
// We don't want to do any destroys
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
if diffApply == nil {
return true, EvalEarlyExitError{}
}
if diffApply.GetDestroy() && diffApply.GetAttributesLen() == 0 {
return true, EvalEarlyExitError{}
}
diffApply.SetDestroy(false)
return true, nil
},
Then: EvalNoop{},
},
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
destroy := false
if diffApply != nil {
destroy = diffApply.GetDestroy() || diffApply.RequiresNew()
}
createBeforeDestroyEnabled =
n.Config.Lifecycle.CreateBeforeDestroy &&
destroy
return createBeforeDestroyEnabled, nil
},
Then: &EvalDeposeState{
Name: stateId,
},
},
// Normally we interpolate count as a preparation step before
// a DynamicExpand, but an apply graph has pre-expanded nodes
// and so the count would otherwise never be interpolated.
//
// This is redundant when there are multiple instances created
// from the same config (count > 1) but harmless since the
// underlying structures have mutexes to make this concurrency-safe.
//
// In most cases this isn't actually needed because we dealt with
// all of the counts during the plan walk, but we need to do this
// in order to support interpolation of resource counts from
// apply-time-interpolated expressions, such as those in
// "provisioner" blocks.
//
// Here we are just populating the interpolated value in-place
// inside this RawConfig object, like we would in
// NodeAbstractCountResource.
&EvalInterpolate{
Config: n.Config.RawCount,
ContinueOnErr: true,
},
&EvalInterpolate{
Config: n.Config.RawConfig.Copy(),
Resource: resource,
Output: &resourceConfig,
},
&EvalGetProvider{
Name: n.ResolvedProvider,
Output: &provider,
},
&EvalReadState{
Name: stateId,
Output: &state,
},
// Re-run validation to catch any errors we missed, e.g. type
// mismatches on computed values.
&EvalValidateResource{
Provider: &provider,
Config: &resourceConfig,
ResourceName: n.Config.Name,
ResourceType: n.Config.Type,
ResourceMode: n.Config.Mode,
IgnoreWarnings: true,
},
&EvalDiff{
Info: info,
Config: &resourceConfig,
Resource: n.Config,
Provider: &provider,
Diff: &diffApply,
State: &state,
OutputDiff: &diffApply,
},
// Get the saved diff
&EvalReadDiff{
Name: stateId,
Diff: &diff,
},
// Compare the diffs
&EvalCompareDiff{
Info: info,
One: &diff,
Two: &diffApply,
},
&EvalGetProvider{
Name: n.ResolvedProvider,
Output: &provider,
},
&EvalReadState{
Name: stateId,
Output: &state,
},
// Call pre-apply hook
&EvalApplyPre{
Info: info,
State: &state,
Diff: &diffApply,
},
&EvalApply{
Info: info,
State: &state,
Diff: &diffApply,
Provider: &provider,
Output: &state,
Error: &err,
CreateNew: &createNew,
},
&EvalWriteState{
Name: stateId,
ResourceType: n.Config.Type,
Provider: n.ResolvedProvider,
Dependencies: stateDeps,
State: &state,
},
&EvalApplyProvisioners{
Info: info,
State: &state,
Resource: n.Config,
InterpResource: resource,
CreateNew: &createNew,
Error: &err,
When: config.ProvisionerWhenCreate,
},
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
return createBeforeDestroyEnabled && err != nil, nil
},
Then: &EvalUndeposeState{
Name: stateId,
State: &state,
},
Else: &EvalWriteState{
Name: stateId,
ResourceType: n.Config.Type,
Provider: n.ResolvedProvider,
Dependencies: stateDeps,
State: &state,
},
},
// We clear the diff out here so that future nodes
// don't see a diff that is already complete. There
// is no longer a diff!
&EvalWriteDiff{
Name: stateId,
Diff: nil,
},
&EvalApplyPost{
Info: info,
State: &state,
Error: &err,
},
&EvalUpdateStateHook{},
},
}
}