opentofu/terraform/eval_variable.go
Martin Atkins ff4ea042c2 config: Allow module authors to specify validation rules for variables
The existing "type" argument allows specifying a type constraint that
allows for some basic validation, but often there are more constraints on
a variable value than just its type.

This new feature (requiring an experiment opt-in for now, while we refine
it) allows specifying arbitrary validation rules for any variable which
can then cause custom error messages to be returned when a caller provides
an inappropriate value.

    variable "example" {
      validation {
        condition = var.example != "nope"
        error_message = "Example value must not be \"nope\"."
      }
    }

The core parts of this are designed to do as little new work as possible
when no validations are specified, and thus the main new checking codepath
here can therefore only run when the experiment is enabled in order to
permit having validations.
2020-01-10 15:23:25 -08:00

233 lines
8.1 KiB
Go

package terraform
import (
"fmt"
"log"
"reflect"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/tfdiags"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
// EvalSetModuleCallArguments is an EvalNode implementation that sets values
// for arguments of a child module call, for later retrieval during
// expression evaluation.
type EvalSetModuleCallArguments struct {
Module addrs.ModuleCallInstance
Values map[string]cty.Value
}
// TODO: test
func (n *EvalSetModuleCallArguments) Eval(ctx EvalContext) (interface{}, error) {
ctx.SetModuleCallArguments(n.Module, n.Values)
return nil, nil
}
// EvalModuleCallArgument is an EvalNode implementation that produces the value
// for a particular variable as will be used by a child module instance.
//
// The result is written into the map given in Values, with its key
// set to the local name of the variable, disregarding the module instance
// address. Any existing values in that map are deleted first. This weird
// interface is a result of trying to be convenient for use with
// EvalContext.SetModuleCallArguments, which expects a map to merge in with
// any existing arguments.
type EvalModuleCallArgument struct {
Addr addrs.InputVariable
Config *configs.Variable
Expr hcl.Expression
// If this flag is set, any diagnostics are discarded and this operation
// will always succeed, though may produce an unknown value in the
// event of an error.
IgnoreDiagnostics bool
Values map[string]cty.Value
}
func (n *EvalModuleCallArgument) Eval(ctx EvalContext) (interface{}, error) {
// Clear out the existing mapping
for k := range n.Values {
delete(n.Values, k)
}
wantType := n.Config.Type
name := n.Addr.Name
expr := n.Expr
if expr == nil {
// Should never happen, but we'll bail out early here rather than
// crash in case it does. We set no value at all in this case,
// making a subsequent call to EvalContext.SetModuleCallArguments
// a no-op.
log.Printf("[ERROR] attempt to evaluate %s with nil expression", n.Addr.String())
return nil, nil
}
val, diags := ctx.EvaluateExpr(expr, cty.DynamicPseudoType, nil)
// We intentionally passed DynamicPseudoType to EvaluateExpr above because
// now we can do our own local type conversion and produce an error message
// with better context if it fails.
var convErr error
val, convErr = convert.Convert(val, wantType)
if convErr != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid value for module argument",
Detail: fmt.Sprintf(
"The given value is not suitable for child module variable %q defined at %s: %s.",
name, n.Config.DeclRange.String(), convErr,
),
Subject: expr.Range().Ptr(),
})
// We'll return a placeholder unknown value to avoid producing
// redundant downstream errors.
val = cty.UnknownVal(wantType)
}
n.Values[name] = val
if n.IgnoreDiagnostics {
return nil, nil
}
return nil, diags.ErrWithWarnings()
}
// evalVariableValidations is an EvalNode implementation that ensures that
// all of the configured custom validations for a variable are passing.
//
// This must be used only after any side-effects that make the value of the
// variable available for use in expression evaluation, such as
// EvalModuleCallArgument for variables in descendent modules.
type evalVariableValidations struct {
Addr addrs.AbsInputVariableInstance
Config *configs.Variable
// Expr is the expression that provided the value for the variable, if any.
// This will be nil for root module variables, because their values come
// from outside the configuration.
Expr hcl.Expression
// If this flag is set, this node becomes a no-op.
// This is here for consistency with EvalModuleCallArgument so that it
// can be populated with the same value, where needed.
IgnoreDiagnostics bool
}
func (n *evalVariableValidations) Eval(ctx EvalContext) (interface{}, error) {
if n.Config == nil || n.IgnoreDiagnostics || len(n.Config.Validations) == 0 {
log.Printf("[TRACE] evalVariableValidations: not active for %s, so skipping", n.Addr)
return nil, nil
}
var diags tfdiags.Diagnostics
// Variable nodes evaluate in the parent module to where they were declared
// because the value expression (n.Expr, if set) comes from the calling
// "module" block in the parent module.
//
// Validation expressions are statically validated (during configuration
// loading) to refer only to the variable being validated, so we can
// bypass our usual evaluation machinery here and just produce a minimal
// evaluation context containing just the required value, and thus avoid
// the problem that ctx's evaluation functions refer to the wrong module.
val := ctx.GetVariableValue(n.Addr)
hclCtx := &hcl.EvalContext{
Variables: map[string]cty.Value{
"var": cty.ObjectVal(map[string]cty.Value{
n.Config.Name: val,
}),
},
Functions: ctx.EvaluationScope(nil, EvalDataForNoInstanceKey).Functions(),
}
for _, validation := range n.Config.Validations {
const errInvalidCondition = "Invalid variable validation result"
const errInvalidValue = "Invalid value for variable"
result, moreDiags := validation.Condition.Value(hclCtx)
diags = diags.Append(moreDiags)
if moreDiags.HasErrors() {
log.Printf("[TRACE] evalVariableValidations: %s rule %s condition expression failed: %s", n.Addr, validation.DeclRange, diags.Err().Error())
}
if !result.IsKnown() {
log.Printf("[TRACE] evalVariableValidations: %s rule %s condition value is unknown, so skipping validation for now", n.Addr, validation.DeclRange)
continue // We'll wait until we've learned more, then.
}
if result.IsNull() {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: errInvalidCondition,
Detail: "Validation condition expression must return either true or false, not null.",
Subject: validation.Condition.Range().Ptr(),
Expression: validation.Condition,
EvalContext: hclCtx,
})
continue
}
var err error
result, err = convert.Convert(result, cty.Bool)
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: errInvalidCondition,
Detail: fmt.Sprintf("Invalid validation condition result value: %s.", tfdiags.FormatError(err)),
Subject: validation.Condition.Range().Ptr(),
Expression: validation.Condition,
EvalContext: hclCtx,
})
continue
}
if result.False() {
if n.Expr != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: errInvalidValue,
Detail: fmt.Sprintf("%s\n\nThis was checked by the validation rule at %s.", validation.ErrorMessage, validation.DeclRange.String()),
Subject: n.Expr.Range().Ptr(),
})
} else {
// Since we don't have a source expression for a root module
// variable, we'll just report the error from the perspective
// of the variable declaration itself.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: errInvalidValue,
Detail: fmt.Sprintf("%s\n\nThis was checked by the validation rule at %s.", validation.ErrorMessage, validation.DeclRange.String()),
Subject: n.Config.DeclRange.Ptr(),
})
}
}
}
return nil, diags.ErrWithWarnings()
}
// hclTypeName returns the name of the type that would represent this value in
// a config file, or falls back to the Go type name if there's no corresponding
// HCL type. This is used for formatted output, not for comparing types.
func hclTypeName(i interface{}) string {
switch k := reflect.Indirect(reflect.ValueOf(i)).Kind(); k {
case reflect.Bool:
return "boolean"
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64, reflect.Uintptr, reflect.Float32, reflect.Float64:
return "number"
case reflect.Array, reflect.Slice:
return "list"
case reflect.Map:
return "map"
case reflect.String:
return "string"
default:
// fall back to the Go type if there's no match
return k.String()
}
}