mirror of
https://github.com/opentofu/opentofu.git
synced 2024-12-28 18:01:01 -06:00
ef5a1c9cfe
This new function complements the existing function FindMoveStatements by potentially generating additional "implied" move statements that aren't written explicit in the configuration but that we'll infer by comparing the configuration and te previous run state. The goal here is to infer only enough to replicate the effect of the "count boundary fixup" graph node (terraform.NodeCountBoundary) that we currently use to deal with this concern of preserving the zero-instance when switching between "count" and not "count". This is just dead code for now. A subsequent commit will introduce this into the "terraform" package while also removing terraform.NodeCountBoundary, thus achieving the same effect as before but in a way that'll get reported in the UI as a move, using the same language that we'd use for an explicit move statement.
187 lines
6.9 KiB
Go
187 lines
6.9 KiB
Go
package refactoring
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/hashicorp/terraform/internal/addrs"
|
|
"github.com/hashicorp/terraform/internal/configs"
|
|
"github.com/hashicorp/terraform/internal/states"
|
|
"github.com/hashicorp/terraform/internal/tfdiags"
|
|
)
|
|
|
|
type MoveStatement struct {
|
|
From, To *addrs.MoveEndpointInModule
|
|
DeclRange tfdiags.SourceRange
|
|
|
|
// Implied is true for statements produced by ImpliedMoveStatements, and
|
|
// false for statements produced by FindMoveStatements.
|
|
//
|
|
// An "implied" statement is one that has no explicit "moved" block in
|
|
// the configuration and was instead generated automatically based on a
|
|
// comparison between current configuration and previous run state.
|
|
// For implied statements, the DeclRange field contains the source location
|
|
// of something in the source code that implied the statement, in which
|
|
// case it would probably be confusing to show that source range to the
|
|
// user, e.g. in an error message, without clearly mentioning that it's
|
|
// related to an implied move statement.
|
|
Implied bool
|
|
}
|
|
|
|
// FindMoveStatements recurses through the modules of the given configuration
|
|
// and returns a flat set of all "moved" blocks defined within, in a
|
|
// deterministic but undefined order.
|
|
func FindMoveStatements(rootCfg *configs.Config) []MoveStatement {
|
|
return findMoveStatements(rootCfg, nil)
|
|
}
|
|
|
|
func findMoveStatements(cfg *configs.Config, into []MoveStatement) []MoveStatement {
|
|
modAddr := cfg.Path
|
|
for _, mc := range cfg.Module.Moved {
|
|
fromAddr, toAddr := addrs.UnifyMoveEndpoints(modAddr, mc.From, mc.To)
|
|
if fromAddr == nil || toAddr == nil {
|
|
// Invalid combination should've been caught during original
|
|
// configuration decoding, in the configs package.
|
|
panic(fmt.Sprintf("incompatible move endpoints in %s", mc.DeclRange))
|
|
}
|
|
|
|
into = append(into, MoveStatement{
|
|
From: fromAddr,
|
|
To: toAddr,
|
|
DeclRange: tfdiags.SourceRangeFromHCL(mc.DeclRange),
|
|
Implied: false,
|
|
})
|
|
}
|
|
|
|
for _, childCfg := range cfg.Children {
|
|
into = findMoveStatements(childCfg, into)
|
|
}
|
|
|
|
return into
|
|
}
|
|
|
|
// ImpliedMoveStatements compares addresses in the given state with addresses
|
|
// in the given configuration and potentially returns additional MoveStatement
|
|
// objects representing moves we infer automatically, even though they aren't
|
|
// explicitly recorded in the configuration.
|
|
//
|
|
// We do this primarily for backward compatibility with behaviors of Terraform
|
|
// versions prior to introducing explicit "moved" blocks. Specifically, this
|
|
// function aims to achieve the same result as the "NodeCountBoundary"
|
|
// heuristic from Terraform v1.0 and earlier, where adding or removing the
|
|
// "count" meta-argument from an already-created resource can automatically
|
|
// preserve the zeroth or the NoKey instance, depending on the direction of
|
|
// the change. We do this only for resources that aren't mentioned already
|
|
// in at least one explicit move statement.
|
|
//
|
|
// As with the previous-version heuristics it replaces, this is a best effort
|
|
// and doesn't handle all situations. An explicit move statement is always
|
|
// preferred, but our goal here is to match exactly the same cases that the
|
|
// old heuristic would've matched, to retain compatibility for existing modules.
|
|
//
|
|
// We should think very hard before adding any _new_ implication rules for
|
|
// moved statements.
|
|
func ImpliedMoveStatements(rootCfg *configs.Config, prevRunState *states.State, explicitStmts []MoveStatement) []MoveStatement {
|
|
return impliedMoveStatements(rootCfg, prevRunState, explicitStmts, nil)
|
|
}
|
|
|
|
func impliedMoveStatements(cfg *configs.Config, prevRunState *states.State, explicitStmts []MoveStatement, into []MoveStatement) []MoveStatement {
|
|
modAddr := cfg.Path
|
|
|
|
// There can be potentially many instances of the module, so we need
|
|
// to consider each of them separately.
|
|
for _, modState := range prevRunState.ModuleInstances(modAddr) {
|
|
// What we're looking for here is either a no-key resource instance
|
|
// where the configuration has count set or a zero-key resource
|
|
// instance where the configuration _doesn't_ have count set.
|
|
// If so, we'll generate a statement replacing no-key with zero-key or
|
|
// vice-versa.
|
|
for _, rState := range modState.Resources {
|
|
rAddr := rState.Addr
|
|
rCfg := cfg.Module.ResourceByAddr(rAddr.Resource)
|
|
if rCfg == nil {
|
|
// If there's no configuration at all then there can't be any
|
|
// automatic move fixup to do.
|
|
continue
|
|
}
|
|
approxSrcRange := tfdiags.SourceRangeFromHCL(rCfg.DeclRange)
|
|
|
|
// NOTE: We're intentionally not checking to see whether the
|
|
// "to" addresses in our implied statements already have
|
|
// instances recorded in state, because ApplyMoves should
|
|
// deal with such conflicts in a deterministic way for both
|
|
// explicit and implicit moves, and we'd rather have that
|
|
// handled all in one place.
|
|
|
|
var fromKey, toKey addrs.InstanceKey
|
|
|
|
switch {
|
|
case rCfg.Count != nil:
|
|
// If we have a count expression then we'll use _that_ as
|
|
// a slightly-more-precise approximate source range.
|
|
approxSrcRange = tfdiags.SourceRangeFromHCL(rCfg.Count.Range())
|
|
|
|
if riState := rState.Instances[addrs.NoKey]; riState != nil {
|
|
fromKey = addrs.NoKey
|
|
toKey = addrs.IntKey(0)
|
|
}
|
|
default:
|
|
if riState := rState.Instances[addrs.IntKey(0)]; riState != nil {
|
|
fromKey = addrs.IntKey(0)
|
|
toKey = addrs.NoKey
|
|
}
|
|
}
|
|
|
|
if fromKey != toKey {
|
|
// We mustn't generate an impied statement if the user already
|
|
// wrote an explicit statement referring to this resource,
|
|
// because they may wish to select an instance key other than
|
|
// zero as the one to retain.
|
|
if !haveMoveStatementForResource(rAddr, explicitStmts) {
|
|
into = append(into, MoveStatement{
|
|
From: addrs.ImpliedMoveStatementEndpoint(rAddr.Instance(fromKey), approxSrcRange),
|
|
To: addrs.ImpliedMoveStatementEndpoint(rAddr.Instance(toKey), approxSrcRange),
|
|
DeclRange: approxSrcRange,
|
|
Implied: true,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, childCfg := range cfg.Children {
|
|
into = findMoveStatements(childCfg, into)
|
|
}
|
|
|
|
return into
|
|
}
|
|
|
|
func (s *MoveStatement) ObjectKind() addrs.MoveEndpointKind {
|
|
// addrs.UnifyMoveEndpoints guarantees that both of our addresses have
|
|
// the same kind, so we can just arbitrary use From and assume To will
|
|
// match it.
|
|
return s.From.ObjectKind()
|
|
}
|
|
|
|
// Name is used internally for displaying the statement graph
|
|
func (s *MoveStatement) Name() string {
|
|
return fmt.Sprintf("%s->%s", s.From, s.To)
|
|
}
|
|
|
|
func haveMoveStatementForResource(addr addrs.AbsResource, stmts []MoveStatement) bool {
|
|
// This is not a particularly optimal way to answer this question,
|
|
// particularly since our caller calls this function in a loop already,
|
|
// but we expect the total number of explicit statements to be small
|
|
// in any reasonable Terraform configuration and so a more complicated
|
|
// approach wouldn't be justified here.
|
|
|
|
for _, stmt := range stmts {
|
|
if stmt.From.SelectsResource(addr) {
|
|
return true
|
|
}
|
|
if stmt.To.SelectsResource(addr) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|