opentofu/terraform/node_data_refresh.go
Martin Atkins d4285dd27f core: Attach resource and provider config schemas during graph build
This is a little awkward since we need to instantiate the providers much
earlier than before. To avoid a lot of reshuffling here we just spin each
one up and then immediately shut it down again, letting our existing init
functionality during the graph walk still do the main initialization.
2018-10-16 18:46:46 -07:00

217 lines
5.8 KiB
Go

package terraform
import (
"github.com/hashicorp/terraform/dag"
"github.com/hashicorp/terraform/tfdiags"
"github.com/zclconf/go-cty/cty"
)
// NodeRefreshableDataResource represents a resource that is "refreshable".
type NodeRefreshableDataResource struct {
*NodeAbstractResource
}
var (
_ GraphNodeSubPath = (*NodeRefreshableDataResource)(nil)
_ GraphNodeDynamicExpandable = (*NodeRefreshableDataResource)(nil)
_ GraphNodeReferenceable = (*NodeRefreshableDataResource)(nil)
_ GraphNodeReferencer = (*NodeRefreshableDataResource)(nil)
_ GraphNodeResource = (*NodeRefreshableDataResource)(nil)
_ GraphNodeAttachResourceConfig = (*NodeRefreshableDataResource)(nil)
)
// GraphNodeDynamicExpandable
func (n *NodeRefreshableDataResource) DynamicExpand(ctx EvalContext) (*Graph, error) {
var diags tfdiags.Diagnostics
count, countDiags := evaluateResourceCountExpression(n.Config.Count, ctx)
diags = diags.Append(countDiags)
if countDiags.HasErrors() {
return nil, diags.Err()
}
// Next we need to potentially rename an instance address in the state
// if we're transitioning whether "count" is set at all.
fixResourceCountSetTransition(ctx, n.ResourceAddr().Resource, count != -1)
// Grab the state which we read
state, lock := ctx.State()
lock.RLock()
defer lock.RUnlock()
// The concrete resource factory we'll use
concreteResource := func(a *NodeAbstractResourceInstance) dag.Vertex {
// Add the config and state since we don't do that via transforms
a.Config = n.Config
a.ResolvedProvider = n.ResolvedProvider
return &NodeRefreshableDataResourceInstance{
NodeAbstractResourceInstance: a,
}
}
// We also need a destroyable resource for orphans that are a result of a
// scaled-in count.
concreteResourceDestroyable := func(a *NodeAbstractResourceInstance) dag.Vertex {
// Add the config since we don't do that via transforms
a.Config = n.Config
return &NodeDestroyableDataResource{
NodeAbstractResourceInstance: a,
}
}
// Start creating the steps
steps := []GraphTransformer{
// Expand the count.
&ResourceCountTransformer{
Concrete: concreteResource,
Schema: n.Schema,
Count: count,
Addr: n.ResourceAddr(),
},
// Add the count orphans. As these are orphaned refresh nodes, we add them
// directly as NodeDestroyableDataResource.
&OrphanResourceCountTransformer{
Concrete: concreteResourceDestroyable,
Count: count,
Addr: n.ResourceAddr(),
State: state,
},
// Attach the state
&AttachStateTransformer{State: state},
// Targeting
&TargetsTransformer{Targets: n.Targets},
// Connect references so ordering is correct
&ReferenceTransformer{},
// Make sure there is a single root
&RootTransformer{},
}
// Build the graph
b := &BasicGraphBuilder{
Steps: steps,
Validate: true,
Name: "NodeRefreshableDataResource",
}
graph, diags := b.Build(ctx.Path())
return graph, diags.ErrWithWarnings()
}
// NodeRefreshableDataResourceInstance represents a single resource instance
// that is refreshable.
type NodeRefreshableDataResourceInstance struct {
*NodeAbstractResourceInstance
}
// GraphNodeEvalable
func (n *NodeRefreshableDataResourceInstance) EvalTree() EvalNode {
addr := n.ResourceInstanceAddr()
// State still uses legacy-style internal ids, so we need to shim to get
// a suitable key to use.
stateId := NewLegacyResourceInstanceAddress(addr).stateId()
// Get the state if we have it. If not, we'll build it.
rs := n.ResourceState
if rs == nil {
rs = &ResourceState{
Type: addr.Resource.Resource.Type,
Provider: n.ResolvedProvider.String(),
}
}
// If we have a configuration then we'll build a fresh state.
if n.Config != nil {
rs = &ResourceState{
Type: addr.Resource.Resource.Type,
Provider: n.ResolvedProvider.String(),
Dependencies: n.StateReferences(),
}
}
// These variables are the state for the eval sequence below, and are
// updated through pointers.
var provider ResourceProvider
var providerSchema *ProviderSchema
var diff *InstanceDiff
var state *InstanceState
var configVal cty.Value
return &EvalSequence{
Nodes: []EvalNode{
// Always destroy the existing state first, since we must
// make sure that values from a previous read will not
// get interpolated if we end up needing to defer our
// loading until apply time.
&EvalWriteState{
Name: stateId,
ResourceType: rs.Type,
Provider: n.ResolvedProvider,
Dependencies: rs.Dependencies,
State: &state, // state is nil here
},
&EvalGetProvider{
Addr: n.ResolvedProvider,
Output: &provider,
},
&EvalReadDataDiff{
Addr: addr.Resource,
Config: n.Config,
Provider: &provider,
ProviderSchema: &providerSchema,
Output: &diff,
OutputValue: &configVal,
OutputState: &state,
},
// The rest of this pass can proceed only if there are no
// computed values in our config.
// (If there are, we'll deal with this during the plan and
// apply phases.)
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
if !configVal.IsWhollyKnown() {
return true, EvalEarlyExitError{}
}
// If the config explicitly has a depends_on for this
// data source, assume the intention is to prevent
// refreshing ahead of that dependency.
if len(n.Config.DependsOn) > 0 {
return true, EvalEarlyExitError{}
}
return true, nil
},
Then: EvalNoop{},
},
&EvalReadDataApply{
Addr: addr.Resource,
Diff: &diff,
Provider: &provider,
Output: &state,
},
&EvalWriteState{
Name: stateId,
ResourceType: rs.Type,
Provider: n.ResolvedProvider,
Dependencies: rs.Dependencies,
State: &state,
},
&EvalUpdateStateHook{},
},
}
}