opentofu/terraform/node_resource_plan_instance.go
Martin Atkins c937c06a03 terraform: ugly huge change to weave in new HCL2-oriented types
Due to how deeply the configuration types go into Terraform Core, there
isn't a great way to switch out to HCL2 gradually. As a consequence, this
huge commit gets us from the old state to a _compilable_ new state, but
does not yet attempt to fix any tests and has a number of known missing
parts and bugs. We will continue to iterate on this in forthcoming
commits, heading back towards passing tests and making Terraform
fully-functional again.

The three main goals here are:
- Use the configuration models from the "configs" package instead of the
  older models in the "config" package, which is now deprecated and
  preserved only to help us write our migration tool.
- Do expression inspection and evaluation using the functionality of the
  new "lang" package, instead of the Interpolator type and related
  functionality in the main "terraform" package.
- Represent addresses of various objects using types in the addrs package,
  rather than hand-constructed strings. This is not critical to support
  the above, but was a big help during the implementation of these other
  points since it made it much more explicit what kind of address is
  expected in each context.

Since our new packages are built to accommodate some future planned
features that are not yet implemented (e.g. the "for_each" argument on
resources, "count"/"for_each" on modules), and since there's still a fair
amount of functionality still using old-style APIs, there is a moderate
amount of shimming here to connect new assumptions with old, hopefully in
a way that makes it easier to find and eliminate these shims later.

I apologize in advance to the person who inevitably just found this huge
commit while spelunking through the commit history.
2018-10-16 18:46:46 -07:00

160 lines
4.1 KiB
Go

package terraform
import (
"fmt"
"github.com/hashicorp/terraform/addrs"
"github.com/zclconf/go-cty/cty"
)
// NodePlannableResourceInstance represents a _single_ resource
// instance that is plannable. This means this represents a single
// count index, for example.
type NodePlannableResourceInstance struct {
*NodeAbstractResourceInstance
}
var (
_ GraphNodeSubPath = (*NodePlannableResourceInstance)(nil)
_ GraphNodeReferenceable = (*NodePlannableResourceInstance)(nil)
_ GraphNodeReferencer = (*NodePlannableResourceInstance)(nil)
_ GraphNodeResource = (*NodePlannableResourceInstance)(nil)
_ GraphNodeResourceInstance = (*NodePlannableResourceInstance)(nil)
_ GraphNodeAttachResourceConfig = (*NodePlannableResourceInstance)(nil)
_ GraphNodeAttachResourceState = (*NodePlannableResourceInstance)(nil)
_ GraphNodeEvalable = (*NodePlannableResourceInstance)(nil)
)
// GraphNodeEvalable
func (n *NodePlannableResourceInstance) EvalTree() EvalNode {
addr := n.ResourceInstanceAddr()
// State still uses legacy-style internal ids, so we need to shim to get
// a suitable key to use.
stateId := NewLegacyResourceInstanceAddress(addr).stateId()
// Determine the dependencies for the state.
stateDeps := n.StateReferences()
// Eval info is different depending on what kind of resource this is
switch addr.Resource.Resource.Mode {
case addrs.ManagedResourceMode:
return n.evalTreeManagedResource(addr, stateId, stateDeps)
case addrs.DataResourceMode:
return n.evalTreeDataResource(addr, stateId, stateDeps)
default:
panic(fmt.Errorf("unsupported resource mode %s", n.Config.Mode))
}
}
func (n *NodePlannableResourceInstance) evalTreeDataResource(addr addrs.AbsResourceInstance, stateId string, stateDeps []string) EvalNode {
var provider ResourceProvider
var providerSchema *ProviderSchema
var diff *InstanceDiff
var state *InstanceState
var configVal cty.Value
return &EvalSequence{
Nodes: []EvalNode{
&EvalReadState{
Name: stateId,
Output: &state,
},
&EvalGetProvider{
Addr: n.ResolvedProvider,
Output: &provider,
Schema: &providerSchema,
},
&EvalReadDataDiff{
Addr: addr.Resource,
Config: n.Config,
Provider: &provider,
ProviderSchema: &providerSchema,
Output: &diff,
OutputValue: &configVal,
OutputState: &state,
},
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
computed := !configVal.IsWhollyKnown()
// If the configuration is complete and we
// already have a state then we don't need to
// do any further work during apply, because we
// already populated the state during refresh.
if !computed && state != nil {
return true, EvalEarlyExitError{}
}
return true, nil
},
Then: EvalNoop{},
},
&EvalWriteState{
Name: stateId,
ResourceType: n.Config.Type,
Provider: n.ResolvedProvider,
Dependencies: stateDeps,
State: &state,
},
&EvalWriteDiff{
Name: stateId,
Diff: &diff,
},
},
}
}
func (n *NodePlannableResourceInstance) evalTreeManagedResource(addr addrs.AbsResourceInstance, stateId string, stateDeps []string) EvalNode {
var provider ResourceProvider
var providerSchema *ProviderSchema
var diff *InstanceDiff
var state *InstanceState
return &EvalSequence{
Nodes: []EvalNode{
&EvalReadState{
Name: stateId,
Output: &state,
},
&EvalGetProvider{
Addr: n.ResolvedProvider,
Output: &provider,
Schema: &providerSchema,
},
&EvalDiff{
Addr: addr.Resource,
Config: n.Config,
Provider: &provider,
ProviderSchema: &providerSchema,
State: &state,
OutputDiff: &diff,
OutputState: &state,
},
&EvalCheckPreventDestroy{
Addr: addr.Resource,
Config: n.Config,
Diff: &diff,
},
&EvalWriteState{
Name: stateId,
ResourceType: n.Config.Type,
Provider: n.ResolvedProvider,
Dependencies: stateDeps,
State: &state,
},
&EvalWriteDiff{
Name: stateId,
Diff: &diff,
},
},
}
}