opentofu/terraform/graph_builder_eval.go
Martin Atkins f7aa06726a core: Run AttachSchemaTransformer twice to catch provider nodes too
Both ProviderTransformer and ReferenceTransformer need schema information,
and so there's a chicken-and-egg problem here where previously the schemas
were not getting attached to provider nodes created during
ProviderTransformer.

As a stop-gap measure for now we'll just run AttachSchemaTransformer
twice, so we can catch any new nodes created during the provider
transforms.
2018-10-16 18:49:20 -07:00

113 lines
3.4 KiB
Go

package terraform
import (
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/dag"
"github.com/hashicorp/terraform/tfdiags"
)
// EvalGraphBuilder implements GraphBuilder and constructs a graph suitable
// for evaluating in-memory values (input variables, local values, output
// values) in the state without any other side-effects.
//
// This graph is used only in weird cases, such as the "terraform console"
// CLI command, where we need to evaluate expressions against the state
// without taking any other actions.
//
// The generated graph will include nodes for providers, resources, etc
// just to allow indirect dependencies to be resolved, but these nodes will
// not take any actions themselves since we assume that their parts of the
// state, if any, are already complete.
//
// Although the providers are never configured, they must still be available
// in order to obtain schema information used for type checking, etc.
type EvalGraphBuilder struct {
// Config is the configuration tree.
Config *configs.Config
// State is the current state
State *State
// Components is a factory for the plug-in components (providers and
// provisioners) available for use.
Components contextComponentFactory
// Schemas is the repository of schemas we will draw from to analyse
// the configuration.
Schemas *Schemas
}
// See GraphBuilder
func (b *EvalGraphBuilder) Build(path addrs.ModuleInstance) (*Graph, tfdiags.Diagnostics) {
return (&BasicGraphBuilder{
Steps: b.Steps(),
Validate: true,
Name: "EvalGraphBuilder",
}).Build(path)
}
// See GraphBuilder
func (b *EvalGraphBuilder) Steps() []GraphTransformer {
concreteProvider := func(a *NodeAbstractProvider) dag.Vertex {
return &NodeEvalableProvider{
NodeAbstractProvider: a,
}
}
steps := []GraphTransformer{
// Creates all the data resources that aren't in the state. This will also
// add any orphans from scaling in as destroy nodes.
&ConfigTransformer{
Concrete: nil, // just use the abstract type
Config: b.Config,
Unique: true,
},
// Attach the state
&AttachStateTransformer{State: b.State},
// Attach the configuration to any resources
&AttachResourceConfigTransformer{Config: b.Config},
// Add root variables
&RootVariableTransformer{Config: b.Config},
// Add the local values
&LocalTransformer{Config: b.Config},
// Add the outputs
&OutputTransformer{Config: b.Config},
// Add module variables
&ModuleVariableTransformer{Config: b.Config},
// Must be run before TransformProviders so that resource configurations
// can be analyzed.
&AttachSchemaTransformer{Schemas: b.Schemas},
TransformProviders(b.Components.ResourceProviders(), concreteProvider, b.Config),
// Attach schema to the newly-created provider nodes.
// (Will also redundantly re-attach schema to existing resource nodes,
// but that's okay.)
&AttachSchemaTransformer{Schemas: b.Schemas},
// Connect so that the references are ready for targeting. We'll
// have to connect again later for providers and so on.
&ReferenceTransformer{},
// Although we don't configure providers, we do still start them up
// to get their schemas, and so we must shut them down again here.
&CloseProviderTransformer{},
// Single root
&RootTransformer{},
// Remove redundant edges to simplify the graph.
&TransitiveReductionTransformer{},
}
return steps
}