opentofu/internal/dag/dag.go
James Bardin fae68f166f Remove sorted walk functions
These two functions were left during a refactor to ensure the old
behavior of a sorted walk was still accessible in some manner. The
package has since been removed from any public API, and the sorted
versions are no longer called, so we can remove them.
2022-01-04 09:37:53 -05:00

258 lines
6.3 KiB
Go

package dag
import (
"fmt"
"strings"
"github.com/hashicorp/terraform/internal/tfdiags"
"github.com/hashicorp/go-multierror"
)
// AcyclicGraph is a specialization of Graph that cannot have cycles.
type AcyclicGraph struct {
Graph
}
// WalkFunc is the callback used for walking the graph.
type WalkFunc func(Vertex) tfdiags.Diagnostics
// DepthWalkFunc is a walk function that also receives the current depth of the
// walk as an argument
type DepthWalkFunc func(Vertex, int) error
func (g *AcyclicGraph) DirectedGraph() Grapher {
return g
}
// Returns a Set that includes every Vertex yielded by walking down from the
// provided starting Vertex v.
func (g *AcyclicGraph) Ancestors(v Vertex) (Set, error) {
s := make(Set)
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.DepthFirstWalk(g.downEdgesNoCopy(v), memoFunc); err != nil {
return nil, err
}
return s, nil
}
// Returns a Set that includes every Vertex yielded by walking up from the
// provided starting Vertex v.
func (g *AcyclicGraph) Descendents(v Vertex) (Set, error) {
s := make(Set)
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.ReverseDepthFirstWalk(g.upEdgesNoCopy(v), memoFunc); err != nil {
return nil, err
}
return s, nil
}
// Root returns the root of the DAG, or an error.
//
// Complexity: O(V)
func (g *AcyclicGraph) Root() (Vertex, error) {
roots := make([]Vertex, 0, 1)
for _, v := range g.Vertices() {
if g.upEdgesNoCopy(v).Len() == 0 {
roots = append(roots, v)
}
}
if len(roots) > 1 {
// TODO(mitchellh): make this error message a lot better
return nil, fmt.Errorf("multiple roots: %#v", roots)
}
if len(roots) == 0 {
return nil, fmt.Errorf("no roots found")
}
return roots[0], nil
}
// TransitiveReduction performs the transitive reduction of graph g in place.
// The transitive reduction of a graph is a graph with as few edges as
// possible with the same reachability as the original graph. This means
// that if there are three nodes A => B => C, and A connects to both
// B and C, and B connects to C, then the transitive reduction is the
// same graph with only a single edge between A and B, and a single edge
// between B and C.
//
// The graph must be valid for this operation to behave properly. If
// Validate() returns an error, the behavior is undefined and the results
// will likely be unexpected.
//
// Complexity: O(V(V+E)), or asymptotically O(VE)
func (g *AcyclicGraph) TransitiveReduction() {
// For each vertex u in graph g, do a DFS starting from each vertex
// v such that the edge (u,v) exists (v is a direct descendant of u).
//
// For each v-prime reachable from v, remove the edge (u, v-prime).
for _, u := range g.Vertices() {
uTargets := g.downEdgesNoCopy(u)
g.DepthFirstWalk(g.downEdgesNoCopy(u), func(v Vertex, d int) error {
shared := uTargets.Intersection(g.downEdgesNoCopy(v))
for _, vPrime := range shared {
g.RemoveEdge(BasicEdge(u, vPrime))
}
return nil
})
}
}
// Validate validates the DAG. A DAG is valid if it has a single root
// with no cycles.
func (g *AcyclicGraph) Validate() error {
if _, err := g.Root(); err != nil {
return err
}
// Look for cycles of more than 1 component
var err error
cycles := g.Cycles()
if len(cycles) > 0 {
for _, cycle := range cycles {
cycleStr := make([]string, len(cycle))
for j, vertex := range cycle {
cycleStr[j] = VertexName(vertex)
}
err = multierror.Append(err, fmt.Errorf(
"Cycle: %s", strings.Join(cycleStr, ", ")))
}
}
// Look for cycles to self
for _, e := range g.Edges() {
if e.Source() == e.Target() {
err = multierror.Append(err, fmt.Errorf(
"Self reference: %s", VertexName(e.Source())))
}
}
return err
}
func (g *AcyclicGraph) Cycles() [][]Vertex {
var cycles [][]Vertex
for _, cycle := range StronglyConnected(&g.Graph) {
if len(cycle) > 1 {
cycles = append(cycles, cycle)
}
}
return cycles
}
// Walk walks the graph, calling your callback as each node is visited.
// This will walk nodes in parallel if it can. The resulting diagnostics
// contains problems from all graphs visited, in no particular order.
func (g *AcyclicGraph) Walk(cb WalkFunc) tfdiags.Diagnostics {
w := &Walker{Callback: cb, Reverse: true}
w.Update(g)
return w.Wait()
}
// simple convenience helper for converting a dag.Set to a []Vertex
func AsVertexList(s Set) []Vertex {
vertexList := make([]Vertex, 0, len(s))
for _, raw := range s {
vertexList = append(vertexList, raw.(Vertex))
}
return vertexList
}
type vertexAtDepth struct {
Vertex Vertex
Depth int
}
// DepthFirstWalk does a depth-first walk of the graph starting from
// the vertices in start.
func (g *AcyclicGraph) DepthFirstWalk(start Set, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, 0, len(start))
for _, v := range start {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: 0,
})
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
for _, v := range g.downEdgesNoCopy(current.Vertex) {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: current.Depth + 1,
})
}
}
return nil
}
// ReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// the vertices in start.
func (g *AcyclicGraph) ReverseDepthFirstWalk(start Set, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, 0, len(start))
for _, v := range start {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: 0,
})
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
for _, t := range g.upEdgesNoCopy(current.Vertex) {
frontier = append(frontier, &vertexAtDepth{
Vertex: t,
Depth: current.Depth + 1,
})
}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
}
return nil
}