Files
openvino/docs/ops/normalization/BatchNormInference_1.md

171 lines
5.4 KiB
Markdown
Raw Normal View History

Feature/azaytsev/from 2021 4 (#9247) * Added info on DockerHub CI Framework * Feature/azaytsev/change layout (#3295) * Changes according to feedback comments * Replaced @ref's with html links * Fixed links, added a title page for installing from repos and images, fixed formatting issues * Added links * minor fix * Added DL Streamer to the list of components installed by default * Link fixes * Link fixes * ovms doc fix (#2988) * added OpenVINO Model Server * ovms doc fixes Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com> * Updated openvino_docs.xml * Updated the link to software license agreements * Revert "Updated the link to software license agreements" This reverts commit 706dac500e764bd7534f7005ac6197f827d68cb5. * Docs to Sphinx (#8151) * docs to sphinx * Update GPU.md * Update CPU.md * Update AUTO.md * Update performance_int8_vs_fp32.md * update * update md * updates * disable doc ci * disable ci * fix index.rst Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com> # Conflicts: # .gitignore # docs/CMakeLists.txt # docs/IE_DG/Deep_Learning_Inference_Engine_DevGuide.md # docs/IE_DG/Extensibility_DG/Custom_ONNX_Ops.md # docs/IE_DG/Extensibility_DG/VPU_Kernel.md # docs/IE_DG/InferenceEngine_QueryAPI.md # docs/IE_DG/Int8Inference.md # docs/IE_DG/Integrate_with_customer_application_new_API.md # docs/IE_DG/Model_caching_overview.md # docs/IE_DG/supported_plugins/GPU_RemoteBlob_API.md # docs/IE_DG/supported_plugins/HETERO.md # docs/IE_DG/supported_plugins/MULTI.md # docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Caffe.md # docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md # docs/MO_DG/prepare_model/convert_model/Convert_Model_From_MxNet.md # docs/MO_DG/prepare_model/convert_model/Convert_Model_From_ONNX.md # docs/MO_DG/prepare_model/convert_model/Converting_Model.md # docs/MO_DG/prepare_model/convert_model/Converting_Model_General.md # docs/MO_DG/prepare_model/convert_model/Cutting_Model.md # docs/MO_DG/prepare_model/convert_model/pytorch_specific/Convert_RNNT.md # docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_EfficientDet_Models.md # docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_WideAndDeep_Family_Models.md # docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md # docs/doxygen/Doxyfile.config # docs/doxygen/ie_docs.xml # docs/doxygen/ie_plugin_api.config # docs/doxygen/ngraph_cpp_api.config # docs/doxygen/openvino_docs.xml # docs/get_started/get_started_macos.md # docs/get_started/get_started_raspbian.md # docs/get_started/get_started_windows.md # docs/img/cpu_int8_flow.png # docs/index.md # docs/install_guides/VisionAcceleratorFPGA_Configure.md # docs/install_guides/VisionAcceleratorFPGA_Configure_Windows.md # docs/install_guides/deployment-manager-tool.md # docs/install_guides/installing-openvino-linux.md # docs/install_guides/installing-openvino-macos.md # docs/install_guides/installing-openvino-windows.md # docs/optimization_guide/dldt_optimization_guide.md # inference-engine/ie_bridges/c/include/c_api/ie_c_api.h # inference-engine/ie_bridges/python/docs/api_overview.md # inference-engine/ie_bridges/python/sample/ngraph_function_creation_sample/README.md # inference-engine/ie_bridges/python/sample/speech_sample/README.md # inference-engine/ie_bridges/python/src/openvino/inference_engine/ie_api.pyx # inference-engine/include/ie_api.h # inference-engine/include/ie_core.hpp # inference-engine/include/ie_version.hpp # inference-engine/samples/benchmark_app/README.md # inference-engine/samples/speech_sample/README.md # inference-engine/src/plugin_api/exec_graph_info.hpp # inference-engine/src/plugin_api/file_utils.h # inference-engine/src/transformations/include/transformations_visibility.hpp # inference-engine/tools/benchmark_tool/README.md # ngraph/core/include/ngraph/ngraph.hpp # ngraph/frontend/onnx_common/include/onnx_common/parser.hpp # ngraph/python/src/ngraph/utils/node_factory.py # openvino/itt/include/openvino/itt.hpp # thirdparty/ade # tools/benchmark/README.md * Cherry-picked remove font-family (#8211) * Cherry-picked: Update get_started_scripts.md (#8338) * doc updates (#8268) * Various doc changes * theme changes * remove font-family (#8211) * fix css * Update uninstalling-openvino.md * fix css * fix * Fixes for Installation Guides Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com> Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com> # Conflicts: # docs/IE_DG/Bfloat16Inference.md # docs/IE_DG/InferenceEngine_QueryAPI.md # docs/IE_DG/OnnxImporterTutorial.md # docs/IE_DG/supported_plugins/AUTO.md # docs/IE_DG/supported_plugins/HETERO.md # docs/IE_DG/supported_plugins/MULTI.md # docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md # docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md # docs/install_guides/installing-openvino-macos.md # docs/install_guides/installing-openvino-windows.md # docs/ops/opset.md # inference-engine/samples/benchmark_app/README.md # inference-engine/tools/benchmark_tool/README.md # thirdparty/ade * Cherry-picked: doc script changes (#8568) * fix openvino-sphinx-theme * add linkcheck target * fix * change version * add doxygen-xfail.txt * fix * AA * fix * fix * fix * fix * fix # Conflicts: # thirdparty/ade * Cherry-pick: Feature/azaytsev/doc updates gna 2021 4 2 (#8567) * Various doc changes * Reformatted C++/Pythob sections. Updated with info from PR8490 * additional fix * Gemini Lake replaced with Elkhart Lake * Fixed links in IGs, Added 12th Gen # Conflicts: # docs/IE_DG/supported_plugins/GNA.md # thirdparty/ade * Cherry-pick: Feature/azaytsev/doc fixes (#8897) * Various doc changes * Removed the empty Learning path topic * Restored the Gemini Lake CPIU list # Conflicts: # docs/IE_DG/supported_plugins/GNA.md # thirdparty/ade * Cherry-pick: sphinx copybutton doxyrest code blocks (#8992) # Conflicts: # thirdparty/ade * Cherry-pick: iframe video enable fullscreen (#9041) # Conflicts: # thirdparty/ade * Cherry-pick: fix untitled titles (#9213) # Conflicts: # thirdparty/ade * Cherry-pick: perf bench graph animation (#9045) * animation * fix # Conflicts: # thirdparty/ade * Cherry-pick: doc pytest (#8888) * docs pytest * fixes # Conflicts: # docs/doxygen/doxygen-ignore.txt # docs/scripts/ie_docs.xml # thirdparty/ade * Cherry-pick: restore deleted files (#9215) * Added new operations to the doc structure (from removed ie_docs.xml) * Additional fixes * Update docs/IE_DG/InferenceEngine_QueryAPI.md Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com> * Update docs/IE_DG/Int8Inference.md Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com> * Update Custom_Layers_Guide.md * Changes according to review comments * doc scripts fixes * Update docs/IE_DG/Int8Inference.md Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com> * Update Int8Inference.md * update xfail * clang format * updated xfail Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com> Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com> Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com> Co-authored-by: Yury Gorbachev <yury.gorbachev@intel.com> Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
2021-12-21 20:26:37 +03:00
# BatchNormInference {#openvino_docs_ops_normalization_BatchNormInference_1}
2020-06-19 14:39:57 +03:00
@sphinxdirective
**Versioned name**: *BatchNormInference-5*
2020-06-19 14:39:57 +03:00
**Category**: *Normalization*
**Short description**: *BatchNormInference* performs Batch Normalization operation described in the `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift <https://arxiv.org/abs/1502.03167v2>`__ article.
2020-06-19 14:39:57 +03:00
**Detailed Description**
2020-06-19 14:39:57 +03:00
*BatchNormInference* performs the following operations on a given data batch input tensor ``data``:
* Normalizes each activation :math:`x^{(k)}` by the mean and variance.
.. math::
\hat{x}^{(k)}=\frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var(x^{(k)}) + \epsilon}}
2020-06-19 14:39:57 +03:00
where :math:`E[x^{(k)}]` and :math:`Var(x^{(k)})` are the mean and variance, calculated per channel axis of ``data`` input, and correspond to ``mean`` and ``variance`` inputs, respectively. Additionally, :math:`\epsilon` is a value added to the variance for numerical stability and corresponds to ``epsilon`` attribute.
2020-06-19 14:39:57 +03:00
* Performs linear transformation of each normalized activation based on ``gamma`` and ``beta`` input, representing the scaling factor and shift, respectively.
.. math::
\hat{y}^{(k)}=\gamma^{(k)}\hat{x}^{(k)} + \beta^{(k)}
where :math:`\gamma^{(k)}` and :math:`\beta^{(k)}` are learnable parameters, calculated per channel axis, and correspond to ``gamma`` and ``beta`` inputs.
2020-06-19 14:39:57 +03:00
**Mathematical Formulation**
2020-06-19 14:39:57 +03:00
Let ``x`` be a *d*-dimensional input, :math:`x=(x_{1}\dotsc x_{d})`. Since normalization is applied to each activation :math:`E[x^{(k)}]`, you can focus on a particular activation and omit k.
For a particular activation, consider a mini-batch :math:`\mathcal{B}` of m values. *BatchNormInference* performs Batch Normalization algorithm as follows:
* **Input**: Values of :math:`x` over a mini-batch:
.. math::
\mathcal{B} = {x_{1...m}}
* **Parameters to learn**: :math:`\gamma, \beta`
* **Output**:
.. math::
{o_{i} = BN_{\gamma, \beta} ( b_{i} )}
* **Mini-batch mean**:
.. math::
\mu_{\mathcal{B}} \leftarrow \frac{1}{m}\sum_{i=1}^{m}b_{i}
* **Mini-batch variance**:
.. math::
\sigma_{\mathcal{B}}^{2}\leftarrow \frac{1}{m}\sum_{i=1}^{m} ( b_{i} - \mu_{\mathcal{B}})^{2}
* **Normalize**:
.. math::
\hat{b_{i}} \leftarrow \frac{b_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon }}
* **Scale and shift**:
.. math::
o_{i} \leftarrow \gamma\hat{b_{i}} + \beta = BN_{\gamma ,\beta } ( b_{i} )
2020-06-19 14:39:57 +03:00
**Attributes**:
* *epsilon*
* **Description**: *epsilon* is a constant added to the variance for numerical stability.
* **Range of values**: a floating-point number greater than or equal to zero
* **Type**: ``float``
* **Required**: *yes*
**Inputs**
* **1**: ``data`` - A tensor of type *T* and at least rank 2. The second dimension represents the channel axis and must have a span of at least 1. **Required.**
* **2**: ``gamma`` - Scaling factor for normalized value. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
* **3**: ``beta`` - Bias added to the scaled normalized value. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
* **4**: ``mean`` - Value for mean normalization. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
* **5**: ``variance`` - Value for variance normalization. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
**Outputs**
* **1**: The result of element-wise Batch Normalization operation applied to the input tensor ``data``. A tensor of type *T* and the same shape as ``data`` input tensor.
**Types**
* *T*: any supported floating-point type.
**Examples**
Example: 2D input tensor ``data``
.. code-block:: cpp
<layer ... type="BatchNormInference" ...>
<data epsilon="9.99e-06" />
<input>
<port id="0"> < !-- input -->
<dim>10</dim>
<dim>128</dim>
</port>
<port id="1"> < !-- gamma -->
<dim>128</dim>
</port>
<port id="2"> < !-- beta -->
<dim>128</dim>
</port>
<port id="3"> < !-- mean -->
<dim>128</dim>
</port>
<port id="4"> < !-- variance -->
<dim>128</dim>
</port>
</input>
<output>
<port id="5">
<dim>10</dim>
<dim>128</dim>
</port>
</output>
</layer>
Example: 4D input tensor ``data``
.. code-block:: cpp
<layer ... type="BatchNormInference" ...>
<data epsilon="9.99e-06" />
<input>
<port id="0"> < !-- input -->
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
<port id="1"> < !-- gamma -->
<dim>3</dim>
</port>
<port id="2"> < !-- beta -->
<dim>3</dim>
</port>
<port id="3"> < !-- mean -->
<dim>3</dim>
</port>
<port id="4"> < !-- variance -->
<dim>3</dim>
</port>
</input>
<output>
<port id="5">
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</output>
</layer>
@endsphinxdirective