NormalizeL2 spec revision (#6512)
* Move and update details description * Update Required style * Update Particular cases description * Update eps_mode range * Update inputs description * Update outputs description * Add Types section * Update short description * Update examples * Update descriptions * Add headers to examples * Update eps_mode attribute description * Fix have -> has typo * Remove default value from Required attributes
This commit is contained in:
parent
86e5625db6
commit
015ad868ef
@ -4,47 +4,57 @@
|
|||||||
|
|
||||||
**Category**: *Normalization*
|
**Category**: *Normalization*
|
||||||
|
|
||||||
**Short description**: *NormalizeL2* operation performs L2 normalization of the 1st input tensor in slices specified by the 2nd input.
|
**Short description**: *NormalizeL2* operation performs L2 normalization on a given input `data` along dimensions specified by `axes` input.
|
||||||
|
|
||||||
|
**Detailed Description**
|
||||||
|
|
||||||
|
Each element in the output is the result of dividing the corresponding element of `data` input by the result of L2 reduction along dimensions specified by the `axes` input:
|
||||||
|
|
||||||
|
output[i0, i1, ..., iN] = x[i0, i1, ..., iN] / sqrt(eps_mode(sum[j0,..., jN](x[j0, ..., jN]**2), eps))
|
||||||
|
|
||||||
|
Where indices `i0, ..., iN` run through all valid indices for the `data` input and summation `sum[j0, ..., jN]` has `jk = ik` for those dimensions `k` that are not in the set of indices specified by the `axes` input of the operation.
|
||||||
|
`eps_mode` selects how the reduction value and `eps` are combined. It can be `max` or `add` depending on `eps_mode` attribute value.
|
||||||
|
|
||||||
|
Particular cases:
|
||||||
|
|
||||||
|
1. If `axes` is an empty list, then each input element is divided by itself resulting value `1` for all non-zero elements.
|
||||||
|
2. If `axes` contains all dimensions of input `data`, a single L2 reduction value is calculated for the entire input tensor and each input element is divided by that value.
|
||||||
|
|
||||||
|
|
||||||
**Attributes**
|
**Attributes**
|
||||||
|
|
||||||
* *eps*
|
* *eps*
|
||||||
|
|
||||||
* **Description**: *eps* is the number to be added/maximized to/with the variance to avoid division by zero when normalizing the value. For example, *eps* equal to 0.001 means that 0.001 is used if all the values in normalization are equal to zero.
|
* **Description**: *eps* is the number applied by *eps_mode* function to the sum of squares to avoid division by zero when normalizing the value.
|
||||||
* **Range of values**: a positive floating-point number
|
* **Range of values**: a positive floating-point number
|
||||||
* **Type**: `float`
|
* **Type**: `float`
|
||||||
* **Default value**: None
|
|
||||||
* **Required**: *yes*
|
* **Required**: *yes*
|
||||||
|
|
||||||
* *eps_mode*
|
* *eps_mode*
|
||||||
|
|
||||||
* **Description**: Specifies how *eps* is combined with L2 value calculated before division.
|
* **Description**: Specifies how *eps* is combined with the sum of squares to avoid division by zero.
|
||||||
* **Range of values**: `add`, `max`
|
* **Range of values**: `add` or `max`
|
||||||
* **Type**: `string`
|
* **Type**: `string`
|
||||||
* **Default value**: None
|
|
||||||
* **Required**: *yes*
|
* **Required**: *yes*
|
||||||
|
|
||||||
**Inputs**
|
**Inputs**
|
||||||
|
|
||||||
* **1**: `data` - input tensor to be normalized. Type of elements is any floating point type. Required.
|
* **1**: `data` - A tensor of type *T* and arbitrary shape. **Required.**
|
||||||
|
|
||||||
* **2**: `axes` - scalar or 1D tensor with axis indices for the `data` input along which L2 reduction is calculated. Required.
|
* **2**: `axes` - Axis indices of `data` input tensor, along which L2 reduction is calculated. A scalar or 1D tensor of unique elements and type *T_IND*. The range of elements is `[-r, r-1]`, where `r` is the rank of `data` input tensor. **Required.**
|
||||||
|
|
||||||
**Outputs**
|
**Outputs**
|
||||||
|
|
||||||
* **1**: Tensor of the same shape and type as the `data` input and normalized slices defined by `axes` input.
|
* **1**: The result of *NormalizeL2* function applied to `data` input tensor. Normalized tensor of the same type and shape as the data input.
|
||||||
|
|
||||||
**Detailed Description**
|
**Types**
|
||||||
|
|
||||||
Each element in the output is the result of division of corresponding element from the `data` input tensor by the result of L2 reduction along dimensions specified by the `axes` input:
|
* *T*: arbitrary supported floating-point type.
|
||||||
|
* *T_IND*: any supported integer type.
|
||||||
|
|
||||||
output[i0, i1, ..., iN] = x[i0, i1, ..., iN] / sqrt(eps_mode(sum[j0,..., jN](x[j0, ..., jN]**2), eps))
|
**Examples**
|
||||||
|
|
||||||
Where indices `i0, ..., iN` run through all valid indices for the 1st input and summation `sum[j0, ..., jN]` have `jk = ik` for those dimensions `k` that are not in the set of indices specified by the `axes` input of the operation. One of the corner cases is when `axes` is an empty list, then we divide each input element by itself resulting value 1 for all non-zero elements. Another corner case is where `axes` input contains all dimensions from `data` tensor, which means that a single L2 reduction value is calculated for entire input tensor and each input element is divided by that value.
|
*Example: Normalization over channel dimension for `NCHW` layout*
|
||||||
|
|
||||||
`eps_mode` selects how the reduction value and `eps` are combined. It can be `max` or `add` depending on `eps_mode` attribute value.
|
|
||||||
|
|
||||||
**Example**
|
|
||||||
|
|
||||||
```xml
|
```xml
|
||||||
<layer id="1" type="NormalizeL2" ...>
|
<layer id="1" type="NormalizeL2" ...>
|
||||||
@ -57,7 +67,34 @@ Where indices `i0, ..., iN` run through all valid indices for the 1st input and
|
|||||||
<dim>24</dim>
|
<dim>24</dim>
|
||||||
</port>
|
</port>
|
||||||
<port id="1">
|
<port id="1">
|
||||||
<dim>2</dim> <!-- value is [2, 3] that means independent normalization in each channel -->
|
<dim>1</dim> <!-- axes list [1] means normalization over channel dimension -->
|
||||||
|
</port>
|
||||||
|
</input>
|
||||||
|
<output>
|
||||||
|
<port id="2">
|
||||||
|
<dim>6</dim>
|
||||||
|
<dim>12</dim>
|
||||||
|
<dim>10</dim>
|
||||||
|
<dim>24</dim>
|
||||||
|
</port>
|
||||||
|
</output>
|
||||||
|
</layer>
|
||||||
|
```
|
||||||
|
|
||||||
|
*Example: Normalization over channel and spatial dimensions for `NCHW` layout*
|
||||||
|
|
||||||
|
```xml
|
||||||
|
<layer id="1" type="NormalizeL2" ...>
|
||||||
|
<data eps="1e-8" eps_mode="add"/>
|
||||||
|
<input>
|
||||||
|
<port id="0">
|
||||||
|
<dim>6</dim>
|
||||||
|
<dim>12</dim>
|
||||||
|
<dim>10</dim>
|
||||||
|
<dim>24</dim>
|
||||||
|
</port>
|
||||||
|
<port id="1">
|
||||||
|
<dim>3</dim> <!-- axes list [1, 2, 3] means normalization over channel and spatial dimensions -->
|
||||||
</port>
|
</port>
|
||||||
</input>
|
</input>
|
||||||
<output>
|
<output>
|
||||||
|
Loading…
Reference in New Issue
Block a user