ExperimentalDetectron* shape infer old-style (#1962)
* ExperimentalDetectron* shape infer old-style * nGraph reshape tests
This commit is contained in:
parent
ae8be58701
commit
0182b97980
@ -129,8 +129,9 @@ void ngraph::op::GenericIE::validate_and_infer_types() {
|
||||
}
|
||||
}
|
||||
|
||||
// WA: Proposal shape infer has to know number of outputs
|
||||
if (type == "Proposal" && parameters.find("num_outputs") == parameters.end()) {
|
||||
// WA: shape infer has to know number of outputs
|
||||
if ((type == "Proposal" || type == "ExperimentalDetectronROIFeatureExtractor" || type == "ExperimentalDetectronDetectionOutput")
|
||||
&& parameters.find("num_outputs") == parameters.end()) {
|
||||
parameters["num_outputs"] = std::to_string(outputs.size());
|
||||
}
|
||||
|
||||
|
@ -17,6 +17,7 @@
|
||||
#include "ie_deconv_shape_infer.hpp"
|
||||
#include "ie_deformable_conv_shape_infer.hpp"
|
||||
#include "ie_depth_to_space_shape_infer.hpp"
|
||||
#include "ie_detectionoutput_onnx_shape_infer.hpp"
|
||||
#include "ie_detection_output_shape_infer.hpp"
|
||||
#include "ie_eltwise_shape_infer.hpp"
|
||||
#include "ie_equal_shape_infer.hpp"
|
||||
@ -35,6 +36,8 @@
|
||||
#include "ie_pool_shape_infer.hpp"
|
||||
#include "ie_priorbox_clustered_shape_infer.hpp"
|
||||
#include "ie_priorbox_shape_infer.hpp"
|
||||
#include "ie_priorgridgenerator_onnx_shape_infer.hpp"
|
||||
#include "ie_proposal_onnx_shape_infer.hpp"
|
||||
#include "ie_proposal_shape_infer.hpp"
|
||||
#include "ie_psroi_pooling_shape_infer.hpp"
|
||||
#include "ie_quantize_shape_infer.hpp"
|
||||
@ -48,6 +51,7 @@
|
||||
#include "ie_rnn_cell_shape_infer.hpp"
|
||||
#include "ie_rnn_shape_infer.hpp"
|
||||
#include "ie_roi_pooling_shape_infer.hpp"
|
||||
#include "ie_roifeatureextractor_onnx_shape_infer.hpp"
|
||||
#include "ie_scatter_shape_infer.hpp"
|
||||
#include "ie_select_shape_infer.hpp"
|
||||
#include "ie_shape_shape_infer.hpp"
|
||||
@ -65,6 +69,7 @@
|
||||
#include "ie_tensor_iterator_shape_infer.hpp"
|
||||
#include "ie_tile_shape_infer.hpp"
|
||||
#include "ie_topk_shape_infer.hpp"
|
||||
#include "ie_topkrois_onnx_shape_infer.hpp"
|
||||
#include "ie_unique_shape_infer.hpp"
|
||||
#include "ie_unsqueeze_shape_infer.hpp"
|
||||
#include "ie_upsampling_shape_infer.hpp"
|
||||
@ -157,6 +162,11 @@ REG_SHAPE_INFER_FOR_TYPE(ReshapeShapeProp, Reshape);
|
||||
REG_SHAPE_INFER_FOR_TYPE(DetectionOutputShapeProp, DetectionOutput);
|
||||
REG_SHAPE_INFER_FOR_TYPE(PriorBoxClusteredShapeProp, PriorBoxClustered);
|
||||
REG_SHAPE_INFER_FOR_TYPE(PriorBoxShapeProp, PriorBox);
|
||||
REG_SHAPE_INFER_FOR_TYPE(ExperimentalDetectronDetectionOutputShapeProp, ExperimentalDetectronDetectionOutput);
|
||||
REG_SHAPE_INFER_FOR_TYPE(ExperimentalDetectronPriorGridGeneratorShapeProp, ExperimentalDetectronPriorGridGenerator);
|
||||
REG_SHAPE_INFER_FOR_TYPE(ExperimentalDetectronGenerateProposalsSingleImageShapeProp, ExperimentalDetectronGenerateProposalsSingleImage);
|
||||
REG_SHAPE_INFER_FOR_TYPE(ExperimentalDetectronROIFeatureExtractorShapeProp, ExperimentalDetectronROIFeatureExtractor);
|
||||
REG_SHAPE_INFER_FOR_TYPE(ExperimentalDetectronTopKROIsShapeProp, ExperimentalDetectronTopKROIs);
|
||||
REG_SHAPE_INFER_FOR_TYPE(RoiPoolingShapeProp, ROIPooling);
|
||||
REG_SHAPE_INFER_FOR_TYPE(PSRoiPoolingShapeProp, PSROIPooling);
|
||||
REG_SHAPE_INFER_FOR_TYPE(UpsamplingShapeProp, Upsampling);
|
||||
|
@ -0,0 +1,51 @@
|
||||
// Copyright (C) 2018-2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ie_built_in_impl.hpp"
|
||||
|
||||
namespace InferenceEngine {
|
||||
namespace ShapeInfer {
|
||||
|
||||
/**
|
||||
*@brief Implementation of Shape inference for ExperimentalDetectronDetectionOutput layer
|
||||
*/
|
||||
class ExperimentalDetectronDetectionOutputShapeProp : public BuiltInShapeInferImpl {
|
||||
protected:
|
||||
const int ROIS = 0;
|
||||
const int FEATMAPS = 1;
|
||||
|
||||
public:
|
||||
explicit ExperimentalDetectronDetectionOutputShapeProp(const std::string& type): BuiltInShapeInferImpl(type) {}
|
||||
|
||||
void inferShapesImpl(const std::vector<Blob::CPtr>& inBlobs, const std::map<std::string, std::string>& params,
|
||||
const std::map<std::string, Blob::Ptr>& blobs, std::vector<SizeVector>& outShapes) override {
|
||||
LayerParams lp {};
|
||||
CNNLayer cnnLayer(lp);
|
||||
cnnLayer.params = params;
|
||||
cnnLayer.type = _type;
|
||||
validate(&cnnLayer, inBlobs, params, blobs);
|
||||
|
||||
auto rois_num = cnnLayer.GetParamAsUInt("max_detections_per_image");
|
||||
outShapes.push_back({rois_num, 4});
|
||||
|
||||
auto num_outputs = cnnLayer.GetParamAsUInt("num_outputs");
|
||||
if (num_outputs > 3) THROW_IE_EXCEPTION << "Incorrect value num_outputs: " << num_outputs;
|
||||
if (num_outputs >= 2) {
|
||||
outShapes.push_back({rois_num});
|
||||
}
|
||||
if (num_outputs == 3) {
|
||||
outShapes.push_back({rois_num});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ShapeInfer
|
||||
} // namespace InferenceEngine
|
@ -0,0 +1,57 @@
|
||||
// Copyright (C) 2018-2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <ie_layers.h>
|
||||
|
||||
#include <description_buffer.hpp>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ie_built_in_impl.hpp"
|
||||
|
||||
namespace InferenceEngine {
|
||||
namespace ShapeInfer {
|
||||
|
||||
/**
|
||||
*@brief Implementation of Shape inference for ExperimentalDetectronPriorGridGenerator layer
|
||||
*/
|
||||
class ExperimentalDetectronPriorGridGeneratorShapeProp : public BuiltInShapeInferImpl {
|
||||
protected:
|
||||
const int PRIORS = 0;
|
||||
const int FEATMAP = 1;
|
||||
const int H = 2;
|
||||
const int W = 3;
|
||||
|
||||
public:
|
||||
explicit ExperimentalDetectronPriorGridGeneratorShapeProp(const std::string& type): BuiltInShapeInferImpl(type) {}
|
||||
|
||||
void inferShapesImpl(const std::vector<Blob::CPtr>& inBlobs, const std::map<std::string, std::string>& params,
|
||||
const std::map<std::string, Blob::Ptr>& blobs, std::vector<SizeVector>& outShapes) override {
|
||||
LayerParams lp {};
|
||||
CNNLayer cnnLayer(lp);
|
||||
cnnLayer.params = params;
|
||||
cnnLayer.type = _type;
|
||||
validate(&cnnLayer, inBlobs, params, blobs);
|
||||
|
||||
const auto& priors_shape = inShapes.at(PRIORS);
|
||||
const auto priors_num = priors_shape.at(0);
|
||||
const auto& featmap_shape = inShapes.at(FEATMAP);
|
||||
const auto grid_height = featmap_shape.at(H);
|
||||
const auto grid_width = featmap_shape.at(W);
|
||||
|
||||
const bool flatten = cnnLayer.GetParamAsBool("flatten", true);
|
||||
if (flatten) {
|
||||
outShapes.push_back({grid_height * grid_width * priors_num, 4});
|
||||
} else {
|
||||
outShapes.push_back({grid_height, grid_width, priors_num, 4});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ShapeInfer
|
||||
} // namespace InferenceEngine
|
@ -0,0 +1,40 @@
|
||||
// Copyright (C) 2018-2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ie_built_in_impl.hpp"
|
||||
|
||||
namespace InferenceEngine {
|
||||
namespace ShapeInfer {
|
||||
|
||||
/**
|
||||
*@brief Implementation of Shape inference for ExperimentalDetectronGenerateProposalsSingleImage layer
|
||||
*/
|
||||
class ExperimentalDetectronGenerateProposalsSingleImageShapeProp : public BuiltInShapeInferImpl {
|
||||
public:
|
||||
explicit ExperimentalDetectronGenerateProposalsSingleImageShapeProp(const std::string& type): BuiltInShapeInferImpl(type) {}
|
||||
|
||||
void inferShapesImpl(const std::vector<Blob::CPtr>& inBlobs, const std::map<std::string, std::string>& params,
|
||||
const std::map<std::string, Blob::Ptr>& blobs, std::vector<SizeVector>& outShapes) override {
|
||||
LayerParams lp {};
|
||||
CNNLayer cnnLayer(lp);
|
||||
cnnLayer.params = params;
|
||||
cnnLayer.type = _type;
|
||||
validate(&cnnLayer, inBlobs, params, blobs);
|
||||
|
||||
size_t post_nms_count = static_cast<size_t>(cnnLayer.GetParamAsInt("post_nms_count"));
|
||||
|
||||
outShapes.push_back({post_nms_count, 4});
|
||||
outShapes.push_back({post_nms_count, });
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ShapeInfer
|
||||
} // namespace InferenceEngine
|
@ -0,0 +1,50 @@
|
||||
// Copyright (C) 2018-2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ie_built_in_impl.hpp"
|
||||
|
||||
namespace InferenceEngine {
|
||||
namespace ShapeInfer {
|
||||
|
||||
/**
|
||||
*@brief Implementation of Shape inference for ExperimentalDetectronROIFeatureExtractor layer
|
||||
*/
|
||||
class ExperimentalDetectronROIFeatureExtractorShapeProp : public BuiltInShapeInferImpl {
|
||||
protected:
|
||||
const int ROIS = 0;
|
||||
const int FEATMAPS = 1;
|
||||
|
||||
public:
|
||||
explicit ExperimentalDetectronROIFeatureExtractorShapeProp(const std::string& type): BuiltInShapeInferImpl(type) {}
|
||||
|
||||
void inferShapesImpl(const std::vector<Blob::CPtr>& inBlobs, const std::map<std::string, std::string>& params,
|
||||
const std::map<std::string, Blob::Ptr>& blobs, std::vector<SizeVector>& outShapes) override {
|
||||
LayerParams lp {};
|
||||
CNNLayer cnnLayer(lp);
|
||||
cnnLayer.params = params;
|
||||
cnnLayer.type = _type;
|
||||
validate(&cnnLayer, inBlobs, params, blobs);
|
||||
|
||||
size_t rois_num = inShapes.at(ROIS).at(0);
|
||||
size_t channels_num = inShapes.at(FEATMAPS).at(1);
|
||||
size_t output_size = static_cast<size_t>(cnnLayer.GetParamAsInt("output_size"));
|
||||
outShapes.push_back({rois_num, channels_num, output_size, output_size});
|
||||
|
||||
auto num_outputs = cnnLayer.GetParamAsUInt("num_outputs");
|
||||
if (num_outputs > 2) THROW_IE_EXCEPTION << "Incorrect value num_outputs: " << num_outputs;
|
||||
if (num_outputs == 2) {
|
||||
outShapes.push_back({rois_num, 4});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ShapeInfer
|
||||
} // namespace InferenceEngine
|
@ -0,0 +1,41 @@
|
||||
// Copyright (C) 2018-2020 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <ie_layers.h>
|
||||
|
||||
#include <description_buffer.hpp>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ie_built_in_impl.hpp"
|
||||
|
||||
namespace InferenceEngine {
|
||||
namespace ShapeInfer {
|
||||
|
||||
/**
|
||||
*@brief Implementation of Shape inference for ExperimentalDetectronTopKROIs layer
|
||||
*/
|
||||
class ExperimentalDetectronTopKROIsShapeProp : public BuiltInShapeInferImpl {
|
||||
public:
|
||||
explicit ExperimentalDetectronTopKROIsShapeProp(const std::string& type): BuiltInShapeInferImpl(type) {}
|
||||
|
||||
void inferShapesImpl(const std::vector<Blob::CPtr>& inBlobs, const std::map<std::string, std::string>& params,
|
||||
const std::map<std::string, Blob::Ptr>& blobs, std::vector<SizeVector>& outShapes) override {
|
||||
LayerParams lp {};
|
||||
CNNLayer cnnLayer(lp);
|
||||
cnnLayer.params = params;
|
||||
cnnLayer.type = _type;
|
||||
validate(&cnnLayer, inBlobs, params, blobs);
|
||||
|
||||
const bool max_rois = cnnLayer.GetParamAsInt("max_rois");
|
||||
outShapes.push_back({max_rois, 4});
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ShapeInfer
|
||||
} // namespace InferenceEngine
|
@ -535,3 +535,452 @@ TEST_F(NGraphReshapeTests, ReshapeWithDefaultGenericOps) {
|
||||
|
||||
ASSERT_NO_THROW(network.reshape(newShapes));
|
||||
}
|
||||
|
||||
TEST_F(NGraphReshapeTests, ReshapeEDDetectionOutput) {
|
||||
std::string model = R"V0G0N(
|
||||
<net name="ExperimentalDetectronDetectionOutput" version="10">
|
||||
<layers>
|
||||
<layer name="in0" type="Parameter" id="0" version="opset1">
|
||||
<data shape="1000,4" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in1" type="Parameter" id="1" version="opset1">
|
||||
<data shape="1000,324" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>324</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in2" type="Parameter" id="2" version="opset1">
|
||||
<data shape="1000,324" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>81</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in3" type="Parameter" id="3" version="opset1">
|
||||
<data shape="1,3" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>3</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="4" name="DO" type="ExperimentalDetectronDetectionOutput" version="experimental">
|
||||
<data class_agnostic_box_regression="0" deltas_weights="10.0,10.0,5.0,5.0" max_delta_log_wh="4.135166645050049" max_detections_per_image="100" nms_threshold="0.5" num_classes="81" post_nms_count="2000" score_threshold="0.05000000074505806"/>
|
||||
<input>
|
||||
<port id="0">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
<port id="1">
|
||||
<dim>1000</dim>
|
||||
<dim>324</dim>
|
||||
</port>
|
||||
<port id="2">
|
||||
<dim>1000</dim>
|
||||
<dim>81</dim>
|
||||
</port>
|
||||
<port id="3">
|
||||
<dim>1</dim>
|
||||
<dim>3</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="4" precision="FP32">
|
||||
<dim>100</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
<port id="5" precision="I32">
|
||||
<dim>100</dim>
|
||||
</port>
|
||||
<port id="6" precision="FP32">
|
||||
<dim>100</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="out_0" type="Result" id="5" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>100</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
<layer name="out_1" type="Result" id="6" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>100</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
<layer name="out_2" type="Result" id="7" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>100</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="4" to-port="0"/>
|
||||
<edge from-layer="1" from-port="0" to-layer="4" to-port="1"/>
|
||||
<edge from-layer="2" from-port="0" to-layer="4" to-port="2"/>
|
||||
<edge from-layer="3" from-port="0" to-layer="4" to-port="3"/>
|
||||
<edge from-layer="4" from-port="4" to-layer="5" to-port="0"/>
|
||||
<edge from-layer="4" from-port="5" to-layer="6" to-port="0"/>
|
||||
<edge from-layer="4" from-port="6" to-layer="7" to-port="0"/>
|
||||
</edges>
|
||||
</net>
|
||||
)V0G0N";
|
||||
InferenceEngine::Core ie;
|
||||
Blob::Ptr weights;
|
||||
auto network = ie.ReadNetwork(model, weights);
|
||||
InferenceEngine::ICNNNetwork::InputShapes newShapes;
|
||||
newShapes["in0"] = {2000, 4};
|
||||
newShapes["in1"] = {2000, 324};
|
||||
newShapes["in2"] = {2000, 81};
|
||||
|
||||
ASSERT_NO_THROW(network.reshape(newShapes));
|
||||
}
|
||||
|
||||
TEST_F(NGraphReshapeTests, ReshapeEDPriorGridGenerator) {
|
||||
std::string model = R"V0G0N(
|
||||
<net name="PriorGridGenerator" version="10">
|
||||
<layers>
|
||||
<layer name="in0" type="Parameter" id="0" version="opset1">
|
||||
<data shape="3,4" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>3</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in1" type="Parameter" id="1" version="opset1">
|
||||
<data shape="1,256,200,336" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>256</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in2" type="Parameter" id="2" version="opset1">
|
||||
<data shape="1,3,800,1344" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>81</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="3" name="1117" type="ExperimentalDetectronPriorGridGenerator" version="experimental">
|
||||
<data flatten="1" h="0" stride_x="4.0" stride_y="4.0" w="0"/>
|
||||
<input>
|
||||
<port id="0">
|
||||
<dim>3</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
<port id="1">
|
||||
<dim>1</dim>
|
||||
<dim>256</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
<port id="2">
|
||||
<dim>1</dim>
|
||||
<dim>3</dim>
|
||||
<dim>800</dim>
|
||||
<dim>1344</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="3" precision="FP32">
|
||||
<dim>201600</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="out_0" type="Result" id="4" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>201600</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="3" to-port="0"/>
|
||||
<edge from-layer="1" from-port="0" to-layer="3" to-port="1"/>
|
||||
<edge from-layer="2" from-port="0" to-layer="3" to-port="2"/>
|
||||
<edge from-layer="3" from-port="3" to-layer="4" to-port="0"/>
|
||||
</edges>
|
||||
</net>
|
||||
)V0G0N";
|
||||
InferenceEngine::Core ie;
|
||||
Blob::Ptr weights;
|
||||
auto network = ie.ReadNetwork(model, weights);
|
||||
InferenceEngine::ICNNNetwork::InputShapes newShapes;
|
||||
newShapes["in1"] = {2, 256, 200, 336};
|
||||
newShapes["in2"] = {2, 3, 800, 1344};
|
||||
ASSERT_NO_THROW(network.reshape(newShapes));
|
||||
}
|
||||
|
||||
TEST_F(NGraphReshapeTests, ReshapeEDGenerateProposalsSingleImage) {
|
||||
std::string model = R"V0G0N(
|
||||
<net name="GenerateProposalsSingleImage" version="10">
|
||||
<layers>
|
||||
<layer name="in0" type="Parameter" id="0" version="opset1">
|
||||
<data shape="3" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>3</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in1" type="Parameter" id="1" version="opset1">
|
||||
<data shape="1201600000,4" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>201600</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in2" type="Parameter" id="2" version="opset1">
|
||||
<data shape="12,200,336" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>12</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in3" type="Parameter" id="3" version="opset1">
|
||||
<data shape="1,3" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>3</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="4" name="1133" type="ExperimentalDetectronGenerateProposalsSingleImage" version="experimental">
|
||||
<data min_size="0.0" nms_threshold="0.699999988079071" post_nms_count="1000" pre_nms_count="1000"/>
|
||||
<input>
|
||||
<port id="0">
|
||||
<dim>3</dim>
|
||||
</port>
|
||||
<port id="1">
|
||||
<dim>201600</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
<port id="2">
|
||||
<dim>12</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
<port id="3">
|
||||
<dim>3</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="4" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
<port id="5" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="out_0" type="Result" id="5" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
<layer name="out_1" type="Result" id="6" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="4" to-port="0"/>
|
||||
<edge from-layer="1" from-port="0" to-layer="4" to-port="1"/>
|
||||
<edge from-layer="2" from-port="0" to-layer="4" to-port="2"/>
|
||||
<edge from-layer="3" from-port="0" to-layer="4" to-port="3"/>
|
||||
<edge from-layer="4" from-port="4" to-layer="5" to-port="0"/>
|
||||
<edge from-layer="4" from-port="5" to-layer="6" to-port="0"/>
|
||||
</edges>
|
||||
</net>
|
||||
)V0G0N";
|
||||
InferenceEngine::Core ie;
|
||||
Blob::Ptr weights;
|
||||
auto network = ie.ReadNetwork(model, weights);
|
||||
InferenceEngine::ICNNNetwork::InputShapes newShapes;
|
||||
newShapes["in2"] = {12, 200, 300};
|
||||
newShapes["in3"] = {2, 200, 300};
|
||||
ASSERT_NO_THROW(network.reshape(newShapes));
|
||||
}
|
||||
|
||||
TEST_F(NGraphReshapeTests, ReshapeEDROIFeatureExtractor) {
|
||||
std::string model = R"V0G0N(
|
||||
<net name="ExperimentalDetectronROIFeatureExtractor" version="10">
|
||||
<layers>
|
||||
<layer name="in0" type="Parameter" id="0" version="opset1">
|
||||
<data shape="1000,4" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in1" type="Parameter" id="1" version="opset1">
|
||||
<data shape="1,256,200,336" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1</dim>
|
||||
<dim>256</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="2" name="1190" type="ExperimentalDetectronROIFeatureExtractor" version="experimental">
|
||||
<data aligned="0" distribute_rois_between_levels="1" output_size="7" preserve_rois_order="1" pyramid_scales="4" sampling_ratio="2"/>
|
||||
<input>
|
||||
<port id="0">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
<port id="1">
|
||||
<dim>1</dim>
|
||||
<dim>256</dim>
|
||||
<dim>200</dim>
|
||||
<dim>336</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="2" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>256</dim>
|
||||
<dim>7</dim>
|
||||
<dim>7</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="out_0" type="Result" id="3" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>256</dim>
|
||||
<dim>7</dim>
|
||||
<dim>7</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
|
||||
<edge from-layer="1" from-port="0" to-layer="2" to-port="1"/>
|
||||
<edge from-layer="2" from-port="2" to-layer="3" to-port="0"/>
|
||||
</edges>
|
||||
</net>
|
||||
)V0G0N";
|
||||
InferenceEngine::Core ie;
|
||||
Blob::Ptr weights;
|
||||
auto network = ie.ReadNetwork(model, weights);
|
||||
InferenceEngine::ICNNNetwork::InputShapes newShapes;
|
||||
newShapes["in0"] = {1, 256, 300, 400};
|
||||
newShapes["in1"] = {1000, 256, 7, 7};
|
||||
ASSERT_NO_THROW(network.reshape(newShapes));
|
||||
}
|
||||
|
||||
TEST_F(NGraphReshapeTests, ReshapeEDTopKROIs) {
|
||||
std::string model = R"V0G0N(
|
||||
<net name="ExperimentalDetectronTopKROIs" version="10">
|
||||
<layers>
|
||||
<layer name="in0" type="Parameter" id="0" version="opset1">
|
||||
<data shape="5000,4" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>5000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="in1" type="Parameter" id="1" version="opset1">
|
||||
<data shape="5000" element_type="f32"/>
|
||||
<output>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>5000</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer id="2" name="1189" type="ExperimentalDetectronTopKROIs" version="experimental">
|
||||
<data max_rois="1000"/>
|
||||
<input>
|
||||
<port id="0">
|
||||
<dim>5000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
<port id="1">
|
||||
<dim>5000</dim>
|
||||
</port>
|
||||
</input>
|
||||
<output>
|
||||
<port id="2" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</output>
|
||||
</layer>
|
||||
<layer name="out_0" type="Result" id="3" version="opset1">
|
||||
<input>
|
||||
<port id="0" precision="FP32">
|
||||
<dim>1000</dim>
|
||||
<dim>4</dim>
|
||||
</port>
|
||||
</input>
|
||||
</layer>
|
||||
</layers>
|
||||
<edges>
|
||||
<edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
|
||||
<edge from-layer="1" from-port="0" to-layer="2" to-port="1"/>
|
||||
<edge from-layer="2" from-port="2" to-layer="3" to-port="0"/>
|
||||
</edges>
|
||||
</net>
|
||||
)V0G0N";
|
||||
InferenceEngine::Core ie;
|
||||
Blob::Ptr weights;
|
||||
auto network = ie.ReadNetwork(model, weights);
|
||||
InferenceEngine::ICNNNetwork::InputShapes newShapes;
|
||||
newShapes["in0"] = {10000, 4};
|
||||
newShapes["in1"] = {10000};
|
||||
ASSERT_NO_THROW(network.reshape(newShapes));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user