Remove use of convertOps2Nodes()
& convert2OutVect()
(#20837)
This commit is contained in:
parent
caa81a0b3c
commit
0955faef93
@ -117,8 +117,6 @@ protected:
|
||||
}
|
||||
functionParams.front()->set_friendly_name("data");
|
||||
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(functionParams));
|
||||
|
||||
std::shared_ptr<ov::op::v3::Broadcast> broadcastOp;
|
||||
if (mode == ov::op::BroadcastType::EXPLICIT) {
|
||||
std::shared_ptr<ov::Node> targetShapeOp;
|
||||
@ -133,19 +131,19 @@ protected:
|
||||
} else {
|
||||
axesMappingOp = functionParams.size() > 2 ? functionParams[2] : functionParams[1];
|
||||
}
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(paramOuts[0],
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(functionParams[0],
|
||||
targetShapeOp,
|
||||
axesMappingOp,
|
||||
mode);
|
||||
} else if (mode == ov::op::BroadcastType::NUMPY) {
|
||||
if (isTargetShapeConst) {
|
||||
auto targetShapeConst = ov::op::v0::Constant::create(ov::element::i64, {targetShapeRank}, targetShape);
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(paramOuts[0],
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(functionParams[0],
|
||||
targetShapeConst,
|
||||
mode);
|
||||
} else {
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(paramOuts[0],
|
||||
paramOuts[1],
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(functionParams[0],
|
||||
functionParams[1],
|
||||
mode);
|
||||
}
|
||||
}
|
||||
|
@ -100,14 +100,12 @@ void MvnLayerCPUTest::SetUp() {
|
||||
init_input_shapes({inputShapes});
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
auto mvn = ngraph::builder::makeMVN(paramOuts[0], acrossChanels, normalizeVariance, eps);
|
||||
|
||||
auto mvn = ngraph::builder::makeMVN(params[0], acrossChanels, normalizeVariance, eps);
|
||||
if (!axes.empty()) {
|
||||
mvn = ngraph::builder::makeMVN(paramOuts[0], axes, normalizeVariance, eps);
|
||||
mvn = ngraph::builder::makeMVN(params[0], axes, normalizeVariance, eps);
|
||||
}
|
||||
|
||||
rel_threshold = 0.015f;
|
||||
|
@ -95,11 +95,8 @@ void ReduceCPULayerTest::SetUp() {
|
||||
init_input_shapes(inputShapes);
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
std::vector<size_t> shapeAxes;
|
||||
switch (opType) {
|
||||
@ -116,7 +113,7 @@ void ReduceCPULayerTest::SetUp() {
|
||||
auto reductionAxesNode = std::dynamic_pointer_cast<ngraph::Node>(
|
||||
std::make_shared<ngraph::opset3::Constant>(ngraph::element::Type_t::i64, ngraph::Shape(shapeAxes), axes));
|
||||
|
||||
const auto reduce = ngraph::builder::makeReduce(paramOuts[0], reductionAxesNode, keepDims, reductionType);
|
||||
const auto reduce = ngraph::builder::makeReduce(params[0], reductionAxesNode, keepDims, reductionType);
|
||||
|
||||
// hybrid layouts
|
||||
if (inFmts.size() != 0 && outFmts.size() == 0) {
|
||||
|
@ -53,13 +53,10 @@ void SoftMaxLayerCPUTest::SetUp() {
|
||||
selectedType = makeSelectedTypeStr(selectedType, inType);
|
||||
init_input_shapes({config.inputShape});
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
const auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
const auto softMax = std::make_shared<ngraph::opset1::Softmax>(paramOuts.at(0), config.axis);
|
||||
const auto softMax = std::make_shared<ngraph::opset1::Softmax>(params.at(0), config.axis);
|
||||
|
||||
function = makeNgraphFunction(inType, params, softMax, "SoftMax");
|
||||
}
|
||||
|
@ -200,12 +200,9 @@ protected:
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, padType) = convParams;
|
||||
|
||||
ov::ParameterVector inputParams;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
inputParams.push_back(std::make_shared<ov::op::v0::Parameter>(ov::element::f32, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
|
||||
auto convolutionNode = ngraph::builder::makeConvolution(paramOuts.front(), netType, kernel, stride, padBegin,
|
||||
auto convolutionNode = ngraph::builder::makeConvolution(inputParams[0], netType, kernel, stride, padBegin,
|
||||
padEnd, dilation, padType, convOutChannels);
|
||||
|
||||
function = makeNgraphFunction(netType, inputParams, convolutionNode, "Convolution");
|
||||
|
@ -112,16 +112,14 @@ protected:
|
||||
|
||||
auto ngInPrec = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(inPrec);
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(ngInPrec, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset5::Parameter>(params));
|
||||
|
||||
auto il = builder::makeConstant(ngInPrec, ranges[0], rangesBounds[0], rangesBounds[0].empty());
|
||||
auto ih = builder::makeConstant(ngInPrec, ranges[1], rangesBounds[1], rangesBounds[1].empty());
|
||||
auto ol = builder::makeConstant(ngInPrec, ranges[2], rangesBounds[2], rangesBounds[2].empty());
|
||||
auto oh = builder::makeConstant(ngInPrec, ranges[3], rangesBounds[3], rangesBounds[3].empty());
|
||||
auto fq = std::make_shared<opset5::FakeQuantize>(paramOuts[0], il, ih, ol, oh, levels);
|
||||
auto fq = std::make_shared<opset5::FakeQuantize>(params[0], il, ih, ol, oh, levels);
|
||||
|
||||
layerName = shouldBeDecomposed ? "" : "FakeQuantize";
|
||||
|
||||
|
@ -105,13 +105,12 @@ protected:
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(intInputsPrecision, inputDynamicShapes[2]));
|
||||
params[2]->set_friendly_name("axis");
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
std::shared_ptr<ov::Node> gatherNode;
|
||||
if (isAxisConstant) {
|
||||
gatherNode = std::make_shared<ov::op::v8::Gather>(paramOuts[0], paramOuts[1],
|
||||
gatherNode = std::make_shared<ov::op::v8::Gather>(params[0], params[1],
|
||||
ov::op::v0::Constant::create(intInputsPrecision, ov::Shape({1}), { axis }), batchDims);
|
||||
} else {
|
||||
gatherNode = std::make_shared<ov::op::v8::Gather>(paramOuts[0], paramOuts[1], paramOuts[2], batchDims);
|
||||
gatherNode = std::make_shared<ov::op::v8::Gather>(params[0], params[1], params[2], batchDims);
|
||||
}
|
||||
|
||||
function = makeNgraphFunction(netPrecision, params, gatherNode, "GatherCPU");
|
||||
@ -205,8 +204,7 @@ protected:
|
||||
std::make_shared<ov::op::v0::Parameter>(netPrecision, inputDynamicShapes[0])
|
||||
};
|
||||
params[0]->set_friendly_name("data");
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
std::shared_ptr<ov::Node> gatherNode = std::make_shared<ov::op::v8::Gather>(paramOuts[0],
|
||||
std::shared_ptr<ov::Node> gatherNode = std::make_shared<ov::op::v8::Gather>(params[0],
|
||||
ov::op::v0::Constant::create(intInputsPrecision, ov::Shape({indices.size()}), indices),
|
||||
ov::op::v0::Constant::create(intInputsPrecision, ov::Shape({1}), { axis }), batchDims);
|
||||
|
||||
|
@ -103,9 +103,8 @@ protected:
|
||||
std::make_shared<ov::op::v0::Parameter>(gridPrecision, inputDynamicShapes[1])};
|
||||
params[0]->set_friendly_name("data");
|
||||
params[1]->set_friendly_name("grid");
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
GridSample::Attributes attributes = {alignCorners, interpolateMode, paddingMode};
|
||||
auto gridSampleNode = std::make_shared<GridSample>(paramOuts[0], paramOuts[1], attributes);
|
||||
auto gridSampleNode = std::make_shared<GridSample>(params[0], params[1], attributes);
|
||||
|
||||
function = makeNgraphFunction(dataPrecision, params, gridSampleNode, "GridSampleCPU");
|
||||
}
|
||||
|
@ -68,11 +68,10 @@ protected:
|
||||
init_input_shapes({inputShape});
|
||||
|
||||
ov::ParameterVector paramsIn;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
paramsIn.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
const auto paramsOut = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(paramsIn));
|
||||
const auto grn = std::make_shared<ngraph::opset1::GRN>(paramsOut[0], bias);
|
||||
|
||||
const auto grn = std::make_shared<ngraph::opset1::GRN>(paramsIn[0], bias);
|
||||
const ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(grn)};
|
||||
function = std::make_shared<ngraph::Function>(results, paramsIn, "Grn");
|
||||
}
|
||||
|
@ -193,13 +193,11 @@ protected:
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, numGroups, padType) = groupConvParams;
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netType, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto groupConv = std::dynamic_pointer_cast<ngraph::opset1::GroupConvolution>(
|
||||
ngraph::builder::makeGroupConvolution(paramOuts[0], netType, kernel, stride, padBegin,
|
||||
ngraph::builder::makeGroupConvolution(params[0], netType, kernel, stride, padBegin,
|
||||
padEnd, dilation, padType, convOutChannels, numGroups));
|
||||
function = makeNgraphFunction(netType, params, groupConv, "groupConvolution");
|
||||
}
|
||||
|
@ -65,8 +65,7 @@ protected:
|
||||
init_input_shapes(inputShapes);
|
||||
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, inputDynamicShapes.front())};
|
||||
const auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
const auto logSoftmax = std::make_shared<ngraph::op::v5::LogSoftmax>(paramOuts[0], axis);
|
||||
const auto logSoftmax = std::make_shared<ngraph::op::v5::LogSoftmax>(params[0], axis);
|
||||
const ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(logSoftmax)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "logSoftmax");
|
||||
}
|
||||
|
@ -164,8 +164,7 @@ protected:
|
||||
if (secondaryInputType == helpers::InputLayerType::PARAMETER) {
|
||||
params.push_back(std::dynamic_pointer_cast<opset1::Parameter>(matrixB));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(params));
|
||||
auto matMul = builder::makeMatMul(paramOuts[0], matrixB, transpA, transpB);
|
||||
auto matMul = builder::makeMatMul(params[0], matrixB, transpA, transpB);
|
||||
function = makeNgraphFunction(netType, params, matMul, cpuNodeType);
|
||||
checkFusingPosition = false;
|
||||
}
|
||||
|
@ -190,12 +190,11 @@ protected:
|
||||
selectedType = makeSelectedTypeStr(selectedType, element::i8);
|
||||
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(inType, inShapeA)};
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(params));
|
||||
|
||||
auto matrixB = builder::makeDynamicInputLayer(element::f32, helpers::InputLayerType::CONSTANT, inShapeB);
|
||||
|
||||
auto weiData = generateSparseVector(ngraph::shape_size(inShapeB.get_shape()), weiSparseRate);
|
||||
auto matMul = makeMatMulRelaxed(paramOuts[0], inShapeB, weiType, transpA, transpB, weiData);
|
||||
auto matMul = makeMatMulRelaxed(params[0], inShapeB, weiType, transpA, transpB, weiData);
|
||||
|
||||
function = makeNgraphFunction(element::f32, params, matMul, cpuNodeType);
|
||||
|
||||
|
@ -137,10 +137,9 @@ protected:
|
||||
params.push_back(depthParam);
|
||||
depth = depthParam;
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
auto on_value_const = std::make_shared<ngraph::op::Constant>(outType, ngraph::Shape{ }, OnValue);
|
||||
auto off_value_const = std::make_shared<ngraph::op::Constant>(outType, ngraph::Shape{ }, OffValue);
|
||||
auto oneHot = std::make_shared<ngraph::opset5::OneHot>(paramOuts[0], depth, on_value_const, off_value_const, Axis);
|
||||
auto oneHot = std::make_shared<ngraph::opset5::OneHot>(params[0], depth, on_value_const, off_value_const, Axis);
|
||||
return makeNgraphFunction(ngraph::element::i32, params, oneHot, "OneHot");
|
||||
}
|
||||
void generateDepth() {
|
||||
|
@ -143,7 +143,6 @@ protected:
|
||||
for (auto&& shape : {inputDynamicShapes[0], inputDynamicShapes[1], inputDynamicShapes[2]}) {
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(ngPrc, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
ngraph::op::ProposalAttrs attrs;
|
||||
attrs.base_size = base_size;
|
||||
@ -162,7 +161,7 @@ protected:
|
||||
attrs.framework = framework;
|
||||
attrs.infer_probs = true;
|
||||
|
||||
auto proposal = std::make_shared<opset4::Proposal>(paramOuts[0], paramOuts[1], paramOuts[2], attrs);
|
||||
auto proposal = std::make_shared<opset4::Proposal>(params[0], params[1], params[2], attrs);
|
||||
|
||||
ngraph::ResultVector results{
|
||||
std::make_shared<ngraph::opset1::Result>(proposal->output(0)),
|
||||
|
@ -203,13 +203,10 @@ protected:
|
||||
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(ngPrc, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto roi_pooling = ngraph::builder::makeROIPooling(paramOuts[0], paramOuts[1], poolShape, spatial_scale, pool_method);
|
||||
auto roi_pooling = ngraph::builder::makeROIPooling(params[0], params[1], poolShape, spatial_scale, pool_method);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(roi_pooling)};
|
||||
|
||||
function = makeNgraphFunction(ngPrc, params, roi_pooling, "ROIPooling");
|
||||
|
@ -66,8 +66,7 @@ protected:
|
||||
auto param_node = std::make_shared<ov::op::v0::Parameter>(types[i], inputDynamicShapes[i]);
|
||||
parameters.push_back(param_node);
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(parameters));
|
||||
auto select = ngraph::builder::makeSelect(paramOuts, broadcast);
|
||||
auto select = std::make_shared<ov::op::v1::Select>(parameters[0], parameters[1], parameters[2], broadcast);
|
||||
|
||||
function = makeNgraphFunction(precision, parameters, select, "Eltwise");
|
||||
}
|
||||
|
@ -69,11 +69,10 @@ protected:
|
||||
selectedType = makeSelectedTypeStr("ref", inType);
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
auto shapeOf = std::make_shared<ngraph::opset3::ShapeOf>(paramOuts[0], ngraph::element::i32);
|
||||
|
||||
auto shapeOf = std::make_shared<ngraph::opset3::ShapeOf>(params[0], ngraph::element::i32);
|
||||
|
||||
function = makeNgraphFunction(netPrecision, params, shapeOf, "ShapeOf");
|
||||
}
|
||||
|
@ -107,8 +107,7 @@ protected:
|
||||
selectedType = std::string("ref_any_") + netPrecision.name();
|
||||
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrec, inputDynamicShapes.front())};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
paramShape = {paramOuts[0].get_partial_shape().size()};
|
||||
paramShape = {params[0]->get_partial_shape().size()};
|
||||
|
||||
std::shared_ptr<ov::Node> in2, in3, in4;
|
||||
auto blockShapeParam = std::make_shared<ov::op::v0::Parameter>(ov::element::i64, paramShape);
|
||||
@ -121,7 +120,7 @@ protected:
|
||||
in4 = padsEndParam;
|
||||
params.push_back(padsEndParam);
|
||||
|
||||
auto s2b = std::make_shared<ov::op::v1::SpaceToBatch>(paramOuts[0], in2, in3, in4);
|
||||
auto s2b = std::make_shared<ov::op::v1::SpaceToBatch>(params[0], in2, in3, in4);
|
||||
function = makeNgraphFunction(inType, params, s2b, "SpaceToBatchCPU");
|
||||
}
|
||||
};
|
||||
|
@ -71,12 +71,10 @@ protected:
|
||||
init_input_shapes({inputShapes});
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
auto split = std::dynamic_pointer_cast<ngraph::opset5::Split>(ngraph::builder::makeSplit(paramOuts[0],
|
||||
|
||||
auto split = std::dynamic_pointer_cast<ngraph::opset5::Split>(ngraph::builder::makeSplit(params[0],
|
||||
netPrecision, numSplits, axis));
|
||||
ngraph::ResultVector results;
|
||||
|
||||
|
@ -99,13 +99,12 @@ protected:
|
||||
}
|
||||
functionParams.front()->set_friendly_name("data");
|
||||
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(functionParams));
|
||||
std::shared_ptr<ov::Node> tileNode;
|
||||
if (isRepeatsConst) {
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(paramOuts[0],
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(functionParams[0],
|
||||
ov::op::v0::Constant::create(ov::element::i64, { repeatsData.size() }, repeatsData));
|
||||
} else {
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(paramOuts[0], paramOuts[1]);
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(functionParams[0], functionParams[1]);
|
||||
}
|
||||
function = makeNgraphFunction(netPrecision, functionParams, tileNode, "CPUTile");
|
||||
}
|
||||
|
@ -99,13 +99,12 @@ protected:
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(dataPrecision, shape));
|
||||
}
|
||||
params[0]->set_friendly_name("data");
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
std::shared_ptr<ov::Node> uniqueNode;
|
||||
if (flattened) {
|
||||
uniqueNode = std::make_shared<ov::op::v10::Unique>(paramOuts[0], sorted);
|
||||
uniqueNode = std::make_shared<ov::op::v10::Unique>(params[0], sorted);
|
||||
} else {
|
||||
axis = std::get<1>(flatOrAxis);
|
||||
uniqueNode = std::make_shared<ov::op::v10::Unique>(paramOuts[0],
|
||||
uniqueNode = std::make_shared<ov::op::v10::Unique>(params[0],
|
||||
ov::op::v0::Constant::create(ov::element::i64, ov::Shape({1}), {axis}),
|
||||
sorted);
|
||||
}
|
||||
|
@ -28,11 +28,9 @@ public:
|
||||
<< "Indices vector size and provided indices shape doesn't fit each other";
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
auto indicesNode = ngraph::opset3::Constant::create(secondConstantType, ngraph::Shape(indicesShape), indices);
|
||||
auto axisNode = ngraph::opset3::Constant::create(ngraph::element::i64, ngraph::Shape({}), {axis});
|
||||
auto gather = std::make_shared<ngraph::opset3::Gather>(paramOuts[0], indicesNode, axisNode);
|
||||
auto gather = std::make_shared<ngraph::opset3::Gather>(params[0], indicesNode, axisNode);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(gather)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "gather");
|
||||
}
|
||||
|
@ -56,9 +56,7 @@ protected:
|
||||
const auto ngPrec = element::f32;
|
||||
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(inShapes.first)),
|
||||
std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(inShapes.second))};
|
||||
|
||||
const auto outputNodes = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(inputParams));
|
||||
const auto matMul = builder::makeMatMul(outputNodes[0], outputNodes[1], false, false);
|
||||
const auto matMul = builder::makeMatMul(inputParams[0], inputParams[1], false, false);
|
||||
|
||||
selectedType = makeSelectedTypeStr(with_cpu_x86_avx512_core() ? "brgemm_avx512" : "jit_gemm", ngPrec);
|
||||
|
||||
|
@ -62,8 +62,7 @@ protected:
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
inputParams.push_back(std::make_shared<ov::op::v0::Parameter>(ngraph::element::f32, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
conv = builder::makeGroupConvolution(paramOuts.front(), element::f32, kernelSize, strides, padBegin, padEnd, dilation,
|
||||
conv = builder::makeGroupConvolution(inputParams[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation,
|
||||
paddingType, numOutChannels, numOfGroups);
|
||||
|
||||
ResultVector results;
|
||||
|
@ -67,15 +67,14 @@ protected:
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
inputParams.push_back(std::make_shared<ov::op::v0::Parameter>(ngraph::element::f32, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
switch (convType) {
|
||||
case nodeType::convolution : {
|
||||
conv = builder::makeConvolution(paramOuts.front(), element::f32, kernelSize, strides, padBegin, padEnd, dilation,
|
||||
conv = builder::makeConvolution(inputParams[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation,
|
||||
paddingType, numOutChannels);
|
||||
break;
|
||||
}
|
||||
case nodeType::groupConvolution : {
|
||||
conv = builder::makeGroupConvolution(paramOuts.front(), element::f32, kernelSize, strides, padBegin, padEnd, dilation,
|
||||
conv = builder::makeGroupConvolution(inputParams[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation,
|
||||
paddingType, numOutChannels, numOfGroups);
|
||||
break;
|
||||
}
|
||||
|
@ -67,13 +67,12 @@ protected:
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(ngraph::element::f32, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
std::vector<size_t> shapeAxes;
|
||||
shapeAxes.push_back(axes.size());
|
||||
auto reductionAxesNode = std::dynamic_pointer_cast<ngraph::Node>(
|
||||
std::make_shared<ngraph::opset3::Constant>(ngraph::element::Type_t::i64, ngraph::Shape(shapeAxes), axes));
|
||||
|
||||
const auto reduce = ngraph::builder::makeReduce(paramOuts[0], reductionAxesNode, keepDims, reductionType);
|
||||
const auto reduce = ngraph::builder::makeReduce(params[0], reductionAxesNode, keepDims, reductionType);
|
||||
function = makeNgraphFunction(ElementType::f32, params, reduce, "Reduce");
|
||||
}
|
||||
private:
|
||||
|
@ -42,7 +42,6 @@ protected:
|
||||
cpuNodeType = nodeType2PluginType(convType);
|
||||
|
||||
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{1, 1024, 64})};
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(inputParams));
|
||||
|
||||
std::shared_ptr<Node> conv;
|
||||
const std::vector<size_t> kernelSize = {1};
|
||||
@ -55,11 +54,11 @@ protected:
|
||||
const op::PadType paddingType = op::PadType::EXPLICIT;
|
||||
switch (convType) {
|
||||
case nodeType::convolution : {
|
||||
conv = builder::makeConvolution(paramOuts[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels);
|
||||
conv = builder::makeConvolution(inputParams[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels);
|
||||
break;
|
||||
}
|
||||
case nodeType::groupConvolution : {
|
||||
conv = builder::makeGroupConvolution(paramOuts[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels,
|
||||
conv = builder::makeGroupConvolution(inputParams[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels,
|
||||
numOfGroups);
|
||||
break;
|
||||
}
|
||||
|
@ -66,35 +66,35 @@ void ConvConcatSubgraphTest::SetUp() {
|
||||
|
||||
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape(inputShapes)),
|
||||
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape(inputShapes))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
|
||||
std::vector<std::shared_ptr<ngraph::Node>> convolutionNodes(2);
|
||||
switch (type) {
|
||||
case nodeType::convolution : {
|
||||
for (size_t conv = 0; conv < convolutionNodes.size(); conv++) {
|
||||
convolutionNodes[conv] = ngraph::builder::makeConvolution(paramOuts[conv], ngraph::element::f32, kernelSize, strides, padBegin,
|
||||
convolutionNodes[conv] = ngraph::builder::makeConvolution(inputParams[conv], ngraph::element::f32, kernelSize, strides, padBegin,
|
||||
padEnd, dilation, paddingType, numOutChannels);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case nodeType::convolutionBackpropData : {
|
||||
for (size_t conv = 0; conv < convolutionNodes.size(); conv++) {
|
||||
convolutionNodes[conv] = ngraph::builder::makeConvolutionBackpropData(paramOuts[conv], ngraph::element::f32, kernelSize, strides, padBegin,
|
||||
convolutionNodes[conv] = ngraph::builder::makeConvolutionBackpropData(inputParams[conv], ngraph::element::f32, kernelSize, strides, padBegin,
|
||||
padEnd, dilation, paddingType, numOutChannels);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case nodeType::groupConvolution : {
|
||||
for (size_t conv = 0; conv < convolutionNodes.size(); conv++) {
|
||||
convolutionNodes[conv] = ngraph::builder::makeGroupConvolution(paramOuts[conv], ngraph::element::f32, kernelSize, strides, padBegin,
|
||||
convolutionNodes[conv] = ngraph::builder::makeGroupConvolution(inputParams[conv], ngraph::element::f32, kernelSize, strides, padBegin,
|
||||
padEnd, dilation, paddingType, numOutChannels, numOfGroups);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case nodeType::groupConvolutionBackpropData : {
|
||||
for (size_t conv = 0; conv < convolutionNodes.size(); conv++) {
|
||||
convolutionNodes[conv] = ngraph::builder::makeGroupConvolutionBackpropData(paramOuts[conv], ngraph::element::f32, kernelSize, strides, padBegin,
|
||||
padEnd, dilation, paddingType, numOutChannels, numOfGroups);
|
||||
convolutionNodes[conv] = ngraph::builder::makeGroupConvolutionBackpropData(inputParams[conv], ngraph::element::f32, kernelSize,
|
||||
strides, padBegin, padEnd, dilation, paddingType,
|
||||
numOutChannels, numOfGroups);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
@ -33,7 +33,6 @@ protected:
|
||||
std::tie(postOpMgrPtr, fusedOps) = fusingParams;
|
||||
|
||||
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{1, 3, 40, 40})};
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(inputParams));
|
||||
|
||||
std::shared_ptr<Node> conv;
|
||||
{
|
||||
@ -44,7 +43,7 @@ protected:
|
||||
const std::vector<size_t> dilation = {1, 1};
|
||||
const size_t numOutChannels = 16;
|
||||
const op::PadType paddingType = op::PadType::EXPLICIT;
|
||||
conv = builder::makeConvolution(paramOuts[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels);
|
||||
conv = builder::makeConvolution(inputParams[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels);
|
||||
}
|
||||
std::shared_ptr<Node> pooling;
|
||||
{
|
||||
|
@ -51,8 +51,6 @@ void ConvWithZeroPointFuseSubgraphTest::SetUp() {
|
||||
{-12.8f},
|
||||
{12.7f});
|
||||
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
|
||||
std::vector<std::shared_ptr<ngraph::Node>> branches(2);
|
||||
{
|
||||
ngraph::Strides strides{1, 1};
|
||||
|
@ -113,11 +113,8 @@ protected:
|
||||
std::shared_ptr<Node> H;
|
||||
|
||||
ov::ParameterVector inputParams;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
inputParams.push_back(std::make_shared<ov::op::v0::Parameter>(ngPrec, shape));
|
||||
}
|
||||
|
||||
const auto outputNodes = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes(inputParams));
|
||||
|
||||
auto makeDataFQ = [](const ngraph::Output<Node>& input) {
|
||||
const auto fqLevels = 256;
|
||||
@ -126,10 +123,10 @@ protected:
|
||||
{-128.f/127}, {1.f});
|
||||
};
|
||||
|
||||
auto X_FQ = makeDataFQ(outputNodes[0]);
|
||||
auto X_FQ = makeDataFQ(inputParams[0]);
|
||||
|
||||
if (quantizedHiddenState) {
|
||||
H = makeDataFQ(outputNodes[1]);
|
||||
H = makeDataFQ(inputParams[1]);
|
||||
} else {
|
||||
H = ngraph::builder::makeConstant(ngraph::element::f32, inputDynamicShapes[1].get_shape(), {}, true, 1.f, -1.f);
|
||||
}
|
||||
@ -159,7 +156,7 @@ protected:
|
||||
|
||||
if (rnnType == "LSTMSequence") {
|
||||
hasCell = true;
|
||||
auto C = outputNodes[cellIdx];
|
||||
auto C = inputParams[cellIdx];
|
||||
rnnCellOp = std::make_shared<ov::op::v5::LSTMSequence>(
|
||||
X_FQ, H, C, seq_lengths, W_FQ, R_FQ, B,
|
||||
hiddenSize, op::RecurrentSequenceDirection::FORWARD);
|
||||
|
@ -38,16 +38,15 @@ protected:
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape{1, 512, 32}),
|
||||
std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape{1, 128, 32})};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto FQ = ngraph::builder::makeFakeQuantize(paramOuts[1], ngPrc, 256, {}, {-2.8215785026550293}, {2.799535036087036},
|
||||
auto FQ = ngraph::builder::makeFakeQuantize(params[1], ngPrc, 256, {}, {-2.8215785026550293}, {2.799535036087036},
|
||||
{-2.8215785026550293}, {2.799535036087036});
|
||||
auto FQ_0 = ngraph::builder::makeFakeQuantize(paramOuts[1], ngPrc, 256, {}, {-5.031249523162842}, {4.991942882537842},
|
||||
auto FQ_0 = ngraph::builder::makeFakeQuantize(params[1], ngPrc, 256, {}, {-5.031249523162842}, {4.991942882537842},
|
||||
{-5.031249523162842}, {4.991942882537842});
|
||||
|
||||
auto Add_0 = ngraph::builder::makeEltwise(FQ_0, FQ, EltwiseTypes::ADD);
|
||||
|
||||
auto FQ_1 = ngraph::builder::makeFakeQuantize(paramOuts[0], ngPrc, 256, {}, {-2.122633457183838}, {2.106050491333008},
|
||||
auto FQ_1 = ngraph::builder::makeFakeQuantize(params[0], ngPrc, 256, {}, {-2.122633457183838}, {2.106050491333008},
|
||||
{-2.122633457183838}, {2.106050491333008});
|
||||
|
||||
auto Const = ngraph::builder::makeConstant(ngPrc, {128, 512, 1}, std::vector<float>{-0.0512377955019474}, false);
|
||||
@ -58,7 +57,7 @@ protected:
|
||||
|
||||
auto Add = ngraph::builder::makeEltwise(Add_0, Conv, EltwiseTypes::ADD);
|
||||
|
||||
auto FQ_11 = ngraph::builder::makeFakeQuantize(paramOuts[0], ngPrc, 256, {}, {-3.2050728797912598}, {3.1800332069396973},
|
||||
auto FQ_11 = ngraph::builder::makeFakeQuantize(params[0], ngPrc, 256, {}, {-3.2050728797912598}, {3.1800332069396973},
|
||||
{-3.2050728797912598}, {3.1800332069396973});
|
||||
|
||||
auto Const_ = ngraph::builder::makeConstant(ngPrc, {128, 512, 1}, std::vector<float>{-0.001183388871140778}, false);
|
||||
|
@ -47,9 +47,8 @@ protected:
|
||||
auto constShift = ngraph::opset5::Constant::create(ngraph::element::f32, sumShape, sumConstData);
|
||||
auto mmConst = ngraph::opset5::Constant::create(ngraph::element::f32, mmShape2, mmInData);
|
||||
ov::ParameterVector mmParams {std::make_shared<ov::op::v0::Parameter>(ngPrec, mmShape)};
|
||||
const auto mmOutputNodes = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(mmParams));
|
||||
|
||||
const auto mm = builder::makeMatMul(mmOutputNodes[0], mmConst, false, false);
|
||||
const auto mm = builder::makeMatMul(mmParams[0], mmConst, false, false);
|
||||
auto sum = ngraph::builder::makeEltwise(constShift, mm, ngraph::helpers::EltwiseTypes::ADD);
|
||||
auto fq = ngraph::builder::makeFakeQuantize(sum, ngraph::element::f32, 256, {}, {-8.0f}, {7.0f}, {-8.0f}, {7.0f});
|
||||
|
||||
|
@ -48,9 +48,8 @@ protected:
|
||||
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(splitShape))};
|
||||
|
||||
const auto splitOutputNodes = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(params));
|
||||
const auto splitAxis = rank == 3 ? 1 : 0;
|
||||
const auto split = builder::makeSplit(splitOutputNodes[0], ngPrec, 2 /* splits */, splitAxis);
|
||||
const auto split = builder::makeSplit(params[0], ngPrec, 2 /* splits */, splitAxis);
|
||||
|
||||
SizeVector fcWeightsShape{16, 8};
|
||||
if (rank == 3) bcastTo3D(fcWeightsShape);
|
||||
|
@ -209,7 +209,6 @@ protected:
|
||||
selectedType = makeSelectedTypeStr(selectedType, outType);
|
||||
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(inType, inShapeA)};
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(params));
|
||||
std::shared_ptr<Node> inputB = builder::makeConstant<float>(weiConstElemType, inShapeB.get_shape(), {}, true);
|
||||
if (weiConstElemType == ElementType::f16) {
|
||||
inputB = std::make_shared<opset1::Convert>(inputB, convertOutType);
|
||||
@ -217,7 +216,7 @@ protected:
|
||||
}
|
||||
expectedWeiConstElemType = weiConstElemType;
|
||||
|
||||
auto matMul = builder::makeMatMul(paramOuts[0], inputB, transpA, transpB);
|
||||
auto matMul = builder::makeMatMul(params[0], inputB, transpA, transpB);
|
||||
|
||||
function = CPUTestsBase::makeNgraphFunction(netType, params, matMul, cpuNodeType);
|
||||
}
|
||||
@ -494,7 +493,6 @@ protected:
|
||||
for (auto&& shape : {inShapeFC0, inShapeFC1}) {
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(params));
|
||||
std::shared_ptr<Node> inputWeights = builder::makeConstant<float>(weiConstElemType, inShapeWeights.get_shape(), {}, true);
|
||||
if (weiConstElemType == ElementType::f16) {
|
||||
inputWeights = std::make_shared<opset1::Convert>(inputWeights, convertOutType);
|
||||
@ -503,8 +501,8 @@ protected:
|
||||
// In this test, convert must be folded on the ngraph side, so the constant with fp32 precision is expected
|
||||
expectedWeiConstElemType = ElementType::f32;
|
||||
|
||||
auto matMul0 = builder::makeMatMul(paramOuts[0], inputWeights, transpA, transpB);
|
||||
auto matMul1 = builder::makeMatMul(paramOuts[1], inputWeights, transpA, transpB);
|
||||
auto matMul0 = builder::makeMatMul(params[0], inputWeights, transpA, transpB);
|
||||
auto matMul1 = builder::makeMatMul(params[1], inputWeights, transpA, transpB);
|
||||
|
||||
auto concat = builder::makeConcat({matMul0, matMul1}, 0);
|
||||
|
||||
|
@ -36,8 +36,7 @@ protected:
|
||||
|
||||
SizeVector splitShape{1, 2, 1, 16};
|
||||
ov::ParameterVector splitInputParams {std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(splitShape))};
|
||||
const auto splitOutputNodes = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(splitInputParams));
|
||||
const auto split = builder::makeSplit(splitOutputNodes[0], ngPrec, 2 /* splits */, 1 /* 2nd axis */);
|
||||
const auto split = builder::makeSplit(splitInputParams[0], ngPrec, 2 /* splits */, 1 /* 2nd axis */);
|
||||
|
||||
std::vector<ov::Shape> concatShapes{{1, 1, 8, 8}, {1, 1, 8, 8}};
|
||||
ov::ParameterVector concatInputParams {std::make_shared<ov::op::v0::Parameter>(ngPrec, concatShapes[0]),
|
||||
@ -49,9 +48,8 @@ protected:
|
||||
|
||||
SizeVector matmulShape{1, 1, 16, 8};
|
||||
ov::ParameterVector matmulInputParams {std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(matmulShape))};
|
||||
const auto matmulOutputNodes = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(matmulInputParams));
|
||||
|
||||
const auto matMul2 = builder::makeMatMul(split->output(1), matmulOutputNodes[0], false, false);
|
||||
const auto matMul2 = builder::makeMatMul(split->output(1), matmulInputParams[0], false, false);
|
||||
|
||||
const auto concatMatMuls = builder::makeConcat({matMul1, matMul2}, 2 /* 3rd axis */);
|
||||
|
||||
|
@ -17,7 +17,6 @@ protected:
|
||||
|
||||
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{1, 3, 12, 9}),
|
||||
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{1, 16, 12, 9})};
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(inputParams));
|
||||
|
||||
std::shared_ptr<Node> conv;
|
||||
{
|
||||
@ -28,12 +27,12 @@ protected:
|
||||
const std::vector<size_t> dilation = {1, 1};
|
||||
const size_t numOutChannels = 16;
|
||||
const op::PadType paddingType = op::PadType::EXPLICIT;
|
||||
conv = builder::makeConvolution(paramOuts[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels);
|
||||
conv = builder::makeConvolution(inputParams[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels);
|
||||
}
|
||||
const auto sharedNode = builder::makeConstant(element::f32, {1, 16, 1, 1}, std::vector<float>{}, true);
|
||||
const auto postOpCandidate = builder::makeEltwise(conv, sharedNode, EltwiseTypes::ADD);
|
||||
|
||||
const auto secondConsumpt = builder::makeEltwise(paramOuts[1], sharedNode, EltwiseTypes::ADD);
|
||||
const auto secondConsumpt = builder::makeEltwise(inputParams[1], sharedNode, EltwiseTypes::ADD);
|
||||
|
||||
NodeVector results{postOpCandidate, secondConsumpt};
|
||||
function = std::make_shared<ngraph::Function>(results, inputParams, "NotFusedConvSimpleOp");
|
||||
|
@ -107,10 +107,9 @@ protected:
|
||||
const auto& inShapeB = inputDynamicShapes[1];
|
||||
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ElementType::f32, inShapeA)};
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(params));
|
||||
std::shared_ptr<Node> inputB = builder::makeConstant<float>(ElementType::f32, inShapeB.get_shape(), {}, true);
|
||||
|
||||
auto split = builder::makeVariadicSplit(paramOuts[0], {1, 1}, 0);
|
||||
auto split = builder::makeVariadicSplit(params[0], {1, 1}, 0);
|
||||
|
||||
auto matMul = builder::makeMatMul(split->output(0), inputB, transpA, transpB);
|
||||
|
||||
|
@ -17,9 +17,8 @@ protected:
|
||||
|
||||
auto ngPrc = element::f32;
|
||||
ov::ParameterVector inputParams {std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape{1, 3, 12, 9})};
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(inputParams));
|
||||
|
||||
auto tile = ngraph::builder::makeTile(paramOuts[0], std::vector<int64_t>{1, 2, 1, 1});
|
||||
auto tile = ngraph::builder::makeTile(inputParams[0], std::vector<int64_t>{1, 2, 1, 1});
|
||||
|
||||
const auto const1 = ngraph::builder::makeConstant(ngPrc, std::vector<size_t>{1, 6, 1, 1}, std::vector<float>{}, true);
|
||||
const auto const2 = ngraph::builder::makeConstant(ngPrc, std::vector<size_t>{1, 6, 1, 1}, std::vector<float>{}, true);
|
||||
|
@ -362,9 +362,7 @@ const auto fusingSum = fusingSpecificParams{std::make_shared<postNodesMgr>(std::
|
||||
auto shape = cfg.input->get_output_partial_shape(0);
|
||||
ov::ParameterVector newParams{std::make_shared<ov::op::v0::Parameter>(cfg.type, shape)};
|
||||
cfg.params.insert(cfg.params.end(), newParams.begin(), newParams.end());
|
||||
auto newParamOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(newParams));
|
||||
return std::make_shared<ngraph::opset1::Add>(cfg.input, newParamOuts[0]);
|
||||
return std::make_shared<ngraph::opset1::Add>(cfg.input, newParams[0]);
|
||||
}, "Add(Parameters)"}}), {"Add"}};
|
||||
|
||||
const auto fusingSumEluFQ = fusingSpecificParams{std::make_shared<postNodesMgr>(std::vector<postNodeBuilder>{
|
||||
@ -372,9 +370,7 @@ const auto fusingSumEluFQ = fusingSpecificParams{std::make_shared<postNodesMgr>(
|
||||
auto shape = cfg.input->get_output_partial_shape(0);
|
||||
ov::ParameterVector newParams{std::make_shared<ov::op::v0::Parameter>(cfg.type, shape)};
|
||||
cfg.params.insert(cfg.params.end(), newParams.begin(), newParams.end());
|
||||
auto newParamOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(newParams));
|
||||
return std::make_shared<ngraph::opset1::Add>(cfg.input, newParamOuts[0]);
|
||||
return std::make_shared<ngraph::opset1::Add>(cfg.input, newParams[0]);
|
||||
}, "Add(Parameters)"},
|
||||
{[](postNodeConfig& cfg){
|
||||
return ngraph::builder::makeActivation(cfg.input, cfg.type, ngraph::helpers::Elu, {}, {2.0f});
|
||||
|
@ -103,14 +103,13 @@ void ConvolutionLayerTestFixture::SetUp() {
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, padType) = convParams;
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<Parameter>(params));
|
||||
std::vector<float> filter_weights;
|
||||
|
||||
auto filter_size = std::accumulate(std::begin(kernel), std::end(kernel), 1, std::multiplies<size_t>());
|
||||
filter_weights =
|
||||
ov::test::utils::generate_float_numbers(convOutChannels * inputShape[1] * filter_size, -0.1f, 0.1f);
|
||||
|
||||
auto conv = std::dynamic_pointer_cast<Convolution>(ngraph::builder::makeConvolution(paramOuts[0],
|
||||
auto conv = std::dynamic_pointer_cast<Convolution>(ngraph::builder::makeConvolution(params[0],
|
||||
ngPrc,
|
||||
kernel,
|
||||
stride,
|
||||
|
@ -58,7 +58,6 @@ protected:
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShapes[0])),
|
||||
std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShapes[1]))};
|
||||
std::vector<ngraph::Shape> WRB = {inputShapes[2], inputShapes[3], inputShapes[4]};
|
||||
auto in = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes(params));
|
||||
std::vector<float> weights_vals =
|
||||
ov::test::utils::generate_float_numbers(ngraph::shape_size(WRB[0]), -0.0001f, 0.0001f);
|
||||
std::vector<float> reccurrenceWeights_vals =
|
||||
@ -70,8 +69,8 @@ protected:
|
||||
auto reccurrenceWeightsNode = ngraph::builder::makeConstant<float>(ngPrc, WRB[1], reccurrenceWeights_vals);
|
||||
auto biasNode = ngraph::builder::makeConstant<float>(ngPrc, WRB[2], bias_vals);
|
||||
|
||||
auto gru_cell = std::make_shared<ngraph::opset8::GRUCell>(in[0],
|
||||
in[1],
|
||||
auto gru_cell = std::make_shared<ngraph::opset8::GRUCell>(params[0],
|
||||
params[1],
|
||||
weightsNode,
|
||||
reccurrenceWeightsNode,
|
||||
biasNode,
|
||||
|
@ -62,7 +62,6 @@ protected:
|
||||
|
||||
std::vector<ngraph::Shape> WRB = {inputShapes[3], inputShapes[4], inputShapes[5], inputShapes[2]};
|
||||
|
||||
auto in = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes(params));
|
||||
std::vector<float> weights_vals =
|
||||
ov::test::utils::generate_float_numbers(ngraph::shape_size(WRB[0]), -0.0001f, 0.0001f);
|
||||
std::vector<float> reccurrenceWeights_vals =
|
||||
@ -74,13 +73,13 @@ protected:
|
||||
auto reccurrenceWeightsNode = ngraph::builder::makeConstant<float>(ngPrc, WRB[1], reccurrenceWeights_vals);
|
||||
auto biasNode = ngraph::builder::makeConstant<float>(ngPrc, WRB[2], bias_vals);
|
||||
|
||||
std::vector<float> lengths(in[0].get_partial_shape()[0].get_min_length(),
|
||||
in[0].get_partial_shape()[1].get_min_length());
|
||||
std::vector<float> lengths(params[0]->get_partial_shape()[0].get_min_length(),
|
||||
params[0]->get_partial_shape()[1].get_min_length());
|
||||
std::shared_ptr<ngraph::Node> seq_length =
|
||||
ngraph::builder::makeConstant(ngraph::element::i64, WRB[3], lengths, false);
|
||||
|
||||
auto gru_sequence = std::make_shared<ngraph::opset8::GRUSequence>(in[0],
|
||||
in[1],
|
||||
auto gru_sequence = std::make_shared<ngraph::opset8::GRUSequence>(params[0],
|
||||
params[1],
|
||||
seq_length,
|
||||
weightsNode,
|
||||
reccurrenceWeightsNode,
|
||||
|
@ -61,7 +61,6 @@ protected:
|
||||
std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShapes[2]))};
|
||||
|
||||
std::vector<ngraph::Shape> WRB = {inputShapes[4], inputShapes[5], inputShapes[6], inputShapes[3]};
|
||||
auto in = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes(params));
|
||||
|
||||
std::vector<float> weights_vals =
|
||||
ov::test::utils::generate_float_numbers(ngraph::shape_size(WRB[0]), -0.0001f, 0.0001f);
|
||||
@ -74,13 +73,13 @@ protected:
|
||||
auto reccurrenceWeightsNode = ngraph::builder::makeConstant<float>(ngPrc, WRB[1], reccurrenceWeights_vals);
|
||||
auto biasNode = ngraph::builder::makeConstant<float>(ngPrc, WRB[2], bias_vals);
|
||||
|
||||
std::vector<float> lengths(in[0].get_partial_shape()[0].get_min_length(),
|
||||
in[0].get_partial_shape()[1].get_min_length());
|
||||
std::vector<float> lengths(params[0]->get_partial_shape()[0].get_min_length(),
|
||||
params[0]->get_partial_shape()[1].get_min_length());
|
||||
std::shared_ptr<ngraph::Node> seq_length =
|
||||
ngraph::builder::makeConstant(ngraph::element::i64, WRB[3], lengths, false);
|
||||
auto lstm_sequence = std::make_shared<ngraph::opset8::LSTMSequence>(in[0],
|
||||
in[1],
|
||||
in[2],
|
||||
auto lstm_sequence = std::make_shared<ngraph::opset8::LSTMSequence>(params[0],
|
||||
params[1],
|
||||
params[2],
|
||||
seq_length,
|
||||
weightsNode,
|
||||
reccurrenceWeightsNode,
|
||||
|
@ -74,11 +74,10 @@ void TopKLayerTestGPU::SetUp() {
|
||||
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramIn = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto k = std::make_shared<ov::op::v0::Constant>(ngraph::element::Type_t::i64, ngraph::Shape{}, &keepK);
|
||||
auto topk = std::dynamic_pointer_cast<ov::op::v11::TopK>(
|
||||
std::make_shared<ov::op::v11::TopK>(paramIn[0], k, axis, mode, sort, ngraph::element::Type_t::i64, stable));
|
||||
std::make_shared<ov::op::v11::TopK>(params[0], k, axis, mode, sort, ngraph::element::Type_t::i64, stable));
|
||||
|
||||
ngraph::ResultVector results;
|
||||
for (size_t i = 0; i < topk->get_output_size(); i++) {
|
||||
|
@ -85,12 +85,10 @@ protected:
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, padType) = convParams;
|
||||
|
||||
ov::ParameterVector inputParams;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
inputParams.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
|
||||
auto convolutionNode = ngraph::builder::makeConvolution(paramOuts.front(), netType, kernel, stride, padBegin,
|
||||
auto convolutionNode = ngraph::builder::makeConvolution(inputParams.front(), netType, kernel, stride, padBegin,
|
||||
padEnd, dilation, padType, convOutChannels);
|
||||
|
||||
ngraph::ResultVector results;
|
||||
|
@ -109,8 +109,6 @@ protected:
|
||||
}
|
||||
functionParams.front()->set_friendly_name("data");
|
||||
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<ov::op::v0::Parameter>(functionParams));
|
||||
|
||||
std::shared_ptr<ov::op::v3::Broadcast> broadcastOp;
|
||||
if (mode == ov::op::BroadcastType::EXPLICIT) {
|
||||
std::shared_ptr<ov::Node> targetShapeOp;
|
||||
@ -125,19 +123,19 @@ protected:
|
||||
} else {
|
||||
axesMappingOp = functionParams.size() > 2 ? functionParams[2] : functionParams[1];
|
||||
}
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(paramOuts[0],
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(functionParams[0],
|
||||
targetShapeOp,
|
||||
axesMappingOp,
|
||||
mode);
|
||||
} else if (mode == ov::op::BroadcastType::NUMPY) {
|
||||
if (isTargetShapeConst) {
|
||||
auto targetShapeConst = ov::op::v0::Constant::create(ov::element::i64, {targetShapeRank}, targetShape);
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(paramOuts[0],
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(functionParams[0],
|
||||
targetShapeConst,
|
||||
mode);
|
||||
} else {
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(paramOuts[0],
|
||||
paramOuts[1],
|
||||
broadcastOp = std::make_shared<ov::op::v3::Broadcast>(functionParams[0],
|
||||
functionParams[1],
|
||||
mode);
|
||||
}
|
||||
}
|
||||
|
@ -96,12 +96,10 @@ protected:
|
||||
}
|
||||
|
||||
ov::ParameterVector inputParams;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
inputParams.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
|
||||
auto convolutionNode = ngraph::builder::makeConvolution(paramOuts.front(), netType, kernel, stride, padBegin,
|
||||
auto convolutionNode = ngraph::builder::makeConvolution(inputParams.front(), netType, kernel, stride, padBegin,
|
||||
padEnd, dilation, padType, convOutChannels);
|
||||
if (activationFusing) {
|
||||
auto activationNode = ngraph::builder::makeActivation(convolutionNode, netType, ngraph::helpers::ActivationTypes::Relu);
|
||||
|
@ -196,24 +196,23 @@ protected:
|
||||
init_input_shapes({ inShapes });
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(ngraph::element::f32, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
|
||||
if (attrs.num_classes == -1) {
|
||||
std::shared_ptr<ov::op::v8::DetectionOutput> detOut;
|
||||
|
||||
if (paramOuts.size() == 3)
|
||||
detOut = std::make_shared<ov::op::v8::DetectionOutput>(paramOuts[0], paramOuts[1], paramOuts[2], attrs);
|
||||
else if (paramOuts.size() == 5)
|
||||
detOut = std::make_shared<ov::op::v8::DetectionOutput>(paramOuts[0], paramOuts[1], paramOuts[2], paramOuts[3], paramOuts[4], attrs);
|
||||
if (params.size() == 3)
|
||||
detOut = std::make_shared<ov::op::v8::DetectionOutput>(params[0], params[1], params[2], attrs);
|
||||
else if (params.size() == 5)
|
||||
detOut = std::make_shared<ov::op::v8::DetectionOutput>(params[0], params[1], params[2], params[3], params[4], attrs);
|
||||
else
|
||||
throw std::runtime_error("DetectionOutput layer supports only 3 or 5 inputs");
|
||||
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(detOut)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "DetectionOutputDynamic");
|
||||
} else {
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
auto detOut = ngraph::builder::makeDetectionOutput(paramOuts, attrs);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(detOut)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "DetectionOutputDynamic");
|
||||
|
@ -119,14 +119,11 @@ protected:
|
||||
params.back()->set_friendly_name("axis");
|
||||
}
|
||||
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
|
||||
gatherNode = std::make_shared<ov::op::v7::Gather>(paramOuts[0],
|
||||
isIndicesConstant ? indicesNode : paramOuts[1],
|
||||
gatherNode = std::make_shared<ov::op::v7::Gather>(params[0],
|
||||
isIndicesConstant ? indicesNode : params[1],
|
||||
isAxisConstant ? axisNode
|
||||
: isIndicesConstant ? paramOuts[1]
|
||||
: paramOuts[2],
|
||||
: isIndicesConstant ? params[1]
|
||||
: params[2],
|
||||
batchDims);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset4::Result>(gatherNode)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "Gather");
|
||||
|
@ -100,11 +100,8 @@ protected:
|
||||
params.back()->set_friendly_name("indices");
|
||||
}
|
||||
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
|
||||
gather_ndNode = std::make_shared<ov::op::v8::GatherND>(paramOuts[0],
|
||||
isIndicesConstant ? indicesNode : paramOuts[1],
|
||||
gather_ndNode = std::make_shared<ov::op::v8::GatherND>(params[0],
|
||||
isIndicesConstant ? indicesNode : params[1],
|
||||
batchDims);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset4::Result>(gather_ndNode)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "GatherND");
|
||||
|
@ -83,9 +83,8 @@ protected:
|
||||
std::make_shared<ov::op::v0::Parameter>(gridPrecision, inputDynamicShapes[1])};
|
||||
params[0]->set_friendly_name("data");
|
||||
params[1]->set_friendly_name("grid");
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
GridSample::Attributes attributes = {alignCorners, interpolateMode, paddingMode};
|
||||
auto gridSampleNode = std::make_shared<GridSample>(paramOuts[0], paramOuts[1], attributes);
|
||||
auto gridSampleNode = std::make_shared<GridSample>(params[0], params[1], attributes);
|
||||
|
||||
ngraph::ResultVector results;
|
||||
for (size_t i = 0; i < gridSampleNode->get_output_size(); i++) {
|
||||
|
@ -87,12 +87,10 @@ protected:
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, numGroups, padType) = groupConvParams;
|
||||
|
||||
ov::ParameterVector inputParams;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
inputParams.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(inputParams));
|
||||
|
||||
auto groupConvolutionNode = ngraph::builder::makeGroupConvolution(paramOuts.front(), netType, kernel, stride, padBegin,
|
||||
auto groupConvolutionNode = ngraph::builder::makeGroupConvolution(inputParams.front(), netType, kernel, stride, padBegin,
|
||||
padEnd, dilation, padType, convOutChannels, numGroups);
|
||||
|
||||
ngraph::ResultVector results;
|
||||
|
@ -122,8 +122,7 @@ protected:
|
||||
if (secondaryInputType == helpers::InputLayerType::PARAMETER) {
|
||||
params.push_back(std::dynamic_pointer_cast<opset1::Parameter>(matrixB));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(params));
|
||||
auto matMul = builder::makeMatMul(paramOuts[0], matrixB, transpA, transpB);
|
||||
auto matMul = builder::makeMatMul(params[0], matrixB, transpA, transpB);
|
||||
auto makeFunction = [](const ngraph::element::Type &ngPrc, ngraph::ParameterVector ¶ms, const std::shared_ptr<ngraph::Node> &lastNode) {
|
||||
ngraph::ResultVector results;
|
||||
|
||||
|
@ -72,12 +72,11 @@ protected:
|
||||
std::string eps_mode = "inside_sqrt";
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto axesNode = ngraph::builder::makeConstant(axesType, ngraph::Shape{axes.size()}, axes);
|
||||
auto mvn = ngraph::builder::makeMVN6(paramOuts[0], axesNode, normalizeVariance, eps, eps_mode);
|
||||
auto mvn = ngraph::builder::makeMVN6(params[0], axesNode, normalizeVariance, eps, eps_mode);
|
||||
|
||||
rel_threshold = 0.015f;
|
||||
|
||||
|
@ -56,11 +56,10 @@ protected:
|
||||
init_input_shapes({inputShapes});
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
auto normalize = ngraph::builder::makeNormalizeL2(paramOuts[0], axes, eps, epsMode);
|
||||
|
||||
auto normalize = ngraph::builder::makeNormalizeL2(params[0], axes, eps, epsMode);
|
||||
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset4::Result>(normalize)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "NormalizeL2");
|
||||
|
@ -121,8 +121,7 @@ protected:
|
||||
arg_pad_value = std::make_shared<ngraph::opset3::Constant>(inType, ngraph::Shape{}, &argPadValue);
|
||||
}
|
||||
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<ov::op::v0::Parameter>(functionParams));
|
||||
auto pad = std::make_shared<ngraph::opset3::Pad>(paramOuts[0], pads_begin, pads_end, arg_pad_value, padMode);
|
||||
auto pad = std::make_shared<ngraph::opset3::Pad>(functionParams[0], pads_begin, pads_end, arg_pad_value, padMode);
|
||||
|
||||
ngraph::ResultVector results;
|
||||
for (size_t i = 0; i < pad->get_output_size(); ++i) {
|
||||
|
@ -95,13 +95,11 @@ protected:
|
||||
auto strideInput = ngraph::opset1::Constant::create(ngraph::element::i32, ngraph::Shape{1}, {1});
|
||||
|
||||
ov::ParameterVector functionParams;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
functionParams.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset3::Parameter>(functionParams));
|
||||
|
||||
auto shapeOfOp1 = std::make_shared<opset3::ShapeOf>(paramOuts[0], element::i32);
|
||||
auto shapeOfOp2 = std::make_shared<opset3::ShapeOf>(paramOuts[1], element::i32);
|
||||
auto shapeOfOp1 = std::make_shared<opset3::ShapeOf>(functionParams[0], element::i32);
|
||||
auto shapeOfOp2 = std::make_shared<opset3::ShapeOf>(functionParams[1], element::i32);
|
||||
|
||||
|
||||
auto stridedSliceOp1 = ngraph::builder::makeStridedSlice(shapeOfOp1, beginInput, endInput, strideInput, element::i32,
|
||||
|
@ -78,11 +78,8 @@ protected:
|
||||
init_input_shapes(inputShapes);
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
std::vector<size_t> shapeAxes;
|
||||
shapeAxes.push_back(axes.size());
|
||||
@ -90,7 +87,7 @@ protected:
|
||||
auto reductionAxesNode = std::dynamic_pointer_cast<ngraph::Node>(
|
||||
std::make_shared<ngraph::opset3::Constant>(ngraph::element::Type_t::i64, ngraph::Shape(shapeAxes), axes));
|
||||
|
||||
const auto reduce = ngraph::builder::makeReduce(paramOuts[0], reductionAxesNode, keepDims, reductionType);
|
||||
const auto reduce = ngraph::builder::makeReduce(params[0], reductionAxesNode, keepDims, reductionType);
|
||||
|
||||
auto makeFunction = [](ParameterVector ¶ms, const std::shared_ptr<Node> &lastNode) {
|
||||
ResultVector results;
|
||||
|
@ -183,13 +183,10 @@ protected:
|
||||
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(ngPrc, shape));
|
||||
}
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto roi_pooling = ngraph::builder::makeROIPooling(paramOuts[0], paramOuts[1], poolShape, spatial_scale, pool_method);
|
||||
auto roi_pooling = ngraph::builder::makeROIPooling(params[0], params[1], poolShape, spatial_scale, pool_method);
|
||||
|
||||
ngraph::ResultVector results;
|
||||
for (size_t i = 0; i < roi_pooling->get_output_size(); i++)
|
||||
|
@ -54,11 +54,10 @@ protected:
|
||||
outType = ElementType::i32;
|
||||
|
||||
ov::ParameterVector functionParams;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
functionParams.push_back(std::make_shared<ov::op::v0::Parameter>(netPrecision, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset3::Parameter>(functionParams));
|
||||
auto shapeOfOp = std::make_shared<opset3::ShapeOf>(paramOuts[0], element::i32);
|
||||
|
||||
auto shapeOfOp = std::make_shared<opset3::ShapeOf>(functionParams[0], element::i32);
|
||||
|
||||
auto makeFunction = [](ParameterVector ¶ms, const std::shared_ptr<Node> &lastNode) {
|
||||
ResultVector results;
|
||||
|
@ -53,14 +53,10 @@ protected:
|
||||
|
||||
init_input_shapes({inShape});
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
|
||||
const auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
const auto softMax = std::make_shared<ngraph::opset1::Softmax>(paramOuts.at(0), axis);
|
||||
const auto softMax = std::make_shared<ngraph::opset1::Softmax>(params.at(0), axis);
|
||||
auto makeFunction = [](ParameterVector ¶ms, const std::shared_ptr<Node> &lastNode) {
|
||||
ResultVector results;
|
||||
|
||||
|
@ -66,10 +66,8 @@ protected:
|
||||
}
|
||||
init_input_shapes({inputShape});
|
||||
ov::ParameterVector dyn_params{std::make_shared<ov::op::v0::Parameter>(netPrecision, inputDynamicShapes[0])};
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(dyn_params));
|
||||
auto split = std::dynamic_pointer_cast<ngraph::opset5::Split>(
|
||||
ngraph::builder::makeSplit(paramOuts[0], netPrecision, numSplits, axis));
|
||||
ngraph::builder::makeSplit(dyn_params[0], netPrecision, numSplits, axis));
|
||||
ngraph::ResultVector results;
|
||||
for (size_t i = 0; i < outIndices.size(); i++) {
|
||||
results.push_back(std::make_shared<ngraph::opset1::Result>(split->output(outIndices[i])));
|
||||
@ -205,7 +203,6 @@ protected:
|
||||
init_input_shapes(inputShapes);
|
||||
|
||||
ov::ParameterVector dyn_params{std::make_shared<ov::op::v0::Parameter>(netPrecision, inputDynamicShapes[0])};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(dyn_params));
|
||||
|
||||
auto splitAxisOp = std::make_shared<ngraph::opset3::Constant>(ngraph::element::i64, ngraph::Shape{}, std::vector<int64_t>{static_cast<int64_t>(axis)});
|
||||
|
||||
@ -218,7 +215,7 @@ protected:
|
||||
splitLengthOp = std::make_shared<ngraph::opset3::Constant>(ngraph::element::Type_t::i64, ngraph::Shape{splitLength.size()}, splitLength);
|
||||
}
|
||||
|
||||
auto varSplit = std::make_shared<ngraph::opset3::VariadicSplit>(paramOuts[0], splitAxisOp, splitLengthOp);
|
||||
auto varSplit = std::make_shared<ngraph::opset3::VariadicSplit>(dyn_params[0], splitAxisOp, splitLengthOp);
|
||||
ngraph::ResultVector results;
|
||||
for (size_t i = 0; i < splitLength.size(); i++) {
|
||||
results.push_back(std::make_shared<ngraph::opset1::Result>(varSplit->output(i)));
|
||||
|
@ -93,13 +93,12 @@ protected:
|
||||
}
|
||||
functionParams.front()->set_friendly_name("data");
|
||||
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(functionParams));
|
||||
std::shared_ptr<ov::Node> tileNode;
|
||||
if (isRepeatsConst) {
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(paramOuts[0],
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(functionParams[0],
|
||||
ov::op::v0::Constant::create(ov::element::i64, { repeatsData.size() }, repeatsData));
|
||||
} else {
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(paramOuts[0], paramOuts[1]);
|
||||
tileNode = std::make_shared<ov::op::v0::Tile>(functionParams[0], functionParams[1]);
|
||||
}
|
||||
|
||||
ngraph::ResultVector results;
|
||||
|
@ -74,15 +74,13 @@ protected:
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(dataPrecision, shape));
|
||||
}
|
||||
params[0]->set_friendly_name("data");
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
std::shared_ptr<ov::Node> uniqueNode;
|
||||
if (flattened) {
|
||||
uniqueNode = std::make_shared<ov::op::v10::Unique>(paramOuts[0], sorted);
|
||||
uniqueNode = std::make_shared<ov::op::v10::Unique>(params[0], sorted);
|
||||
} else {
|
||||
axis = std::get<1>(flatOrAxis);
|
||||
uniqueNode = std::make_shared<ov::op::v10::Unique>(
|
||||
paramOuts[0],
|
||||
params[0],
|
||||
ov::op::v0::Constant::create(ov::element::i64, ov::Shape({1}), {axis}),
|
||||
sorted);
|
||||
}
|
||||
|
@ -79,10 +79,8 @@ protected:
|
||||
const auto inShapSplit = inputDynamicShapes[0];
|
||||
const auto inShapeElt = inputDynamicShapes[1];
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : {inShapSplit, inShapeElt}) {
|
||||
for (auto&& shape : {inShapSplit, inShapeElt})
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netType, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
|
||||
auto axis = ngraph::opset1::Constant::create(ngraph::element::i64, ngraph::Shape{}, {0});
|
||||
axis->set_friendly_name("axis");
|
||||
@ -90,10 +88,10 @@ protected:
|
||||
auto split_sizes = ngraph::opset1::Constant::create(ngraph::element::i64, ngraph::Shape{2}, {1, 1});
|
||||
split_sizes->set_friendly_name("split_sizes");
|
||||
|
||||
auto variadicSplitOp = std::make_shared<ngraph::opset1::VariadicSplit>(paramOuts[0], axis, split_sizes);
|
||||
auto variadicSplitOp = std::make_shared<ngraph::opset1::VariadicSplit>(params[0], axis, split_sizes);
|
||||
variadicSplitOp->set_friendly_name("variadicSplit");
|
||||
|
||||
auto addOp = ngraph::builder::makeEltwise(paramOuts[1], variadicSplitOp->output(1), ngraph::helpers::EltwiseTypes::ADD);
|
||||
auto addOp = ngraph::builder::makeEltwise(params[1], variadicSplitOp->output(1), ngraph::helpers::EltwiseTypes::ADD);
|
||||
addOp->set_friendly_name("add");
|
||||
|
||||
ngraph::ResultVector results = {std::make_shared<ngraph::opset1::Result>(addOp)};
|
||||
|
@ -84,12 +84,10 @@ protected:
|
||||
const auto inShapeShapeOf = inputDynamicShapes[0];
|
||||
const auto inShapeElt = inputDynamicShapes[1];
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : {inShapeShapeOf, inShapeElt}) {
|
||||
for (auto&& shape : {inShapeShapeOf, inShapeElt})
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netType, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
|
||||
auto addOp1 = ngraph::builder::makeEltwise(paramOuts[1], paramOuts[1], ngraph::helpers::EltwiseTypes::ADD);
|
||||
auto addOp1 = ngraph::builder::makeEltwise(params[1], params[1], ngraph::helpers::EltwiseTypes::ADD);
|
||||
addOp1->set_friendly_name("add1");
|
||||
|
||||
auto shapeOfOp1 = std::make_shared<ngraph::opset3::ShapeOf>(addOp1, ElementType::i64);
|
||||
@ -110,7 +108,7 @@ protected:
|
||||
auto reshapeOp1 = std::make_shared<ngraph::opset1::Reshape>(addOp1, concatOp1, false);
|
||||
reshapeOp1->set_friendly_name("reshapeOp1");
|
||||
|
||||
auto addOp2 = ngraph::builder::makeEltwise(paramOuts[1], paramOuts[1], ngraph::helpers::EltwiseTypes::ADD);
|
||||
auto addOp2 = ngraph::builder::makeEltwise(params[1], params[1], ngraph::helpers::EltwiseTypes::ADD);
|
||||
addOp2->set_friendly_name("add2");
|
||||
|
||||
auto shapeOfOp2 = std::make_shared<ngraph::opset3::ShapeOf>(addOp2, ElementType::i64);
|
||||
|
@ -81,19 +81,17 @@ protected:
|
||||
init_input_shapes(inputShapes);
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netType, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
|
||||
auto deconvOp = ngraph::builder::makeConvolutionBackpropData(paramOuts[0], netType, {2, 2, 2}, {2, 2, 2}, {0, 0, 0},
|
||||
auto deconvOp = ngraph::builder::makeConvolutionBackpropData(params[0], netType, {2, 2, 2}, {2, 2, 2}, {0, 0, 0},
|
||||
{0, 0, 0}, {1, 1, 1}, ov::op::PadType::EXPLICIT, 16);
|
||||
deconvOp->set_friendly_name("deconv");
|
||||
|
||||
std::vector<int> reduce_axes = {5};
|
||||
auto reduceAxesNode = std::dynamic_pointer_cast<ngraph::Node>(
|
||||
std::make_shared<ngraph::opset3::Constant>(ngraph::element::Type_t::i64, ngraph::Shape({1}), reduce_axes));
|
||||
auto reduceOp = ngraph::builder::makeReduce(paramOuts[1], reduceAxesNode, false, ngraph::helpers::ReductionType::Max);
|
||||
auto reduceOp = ngraph::builder::makeReduce(params[1], reduceAxesNode, false, ngraph::helpers::ReductionType::Max);
|
||||
reduceOp->set_friendly_name("reduce");
|
||||
|
||||
auto concatOp = ngraph::builder::makeConcat({deconvOp, reduceOp}, 1);
|
||||
|
@ -92,15 +92,13 @@ protected:
|
||||
init_input_shapes({inputShape});
|
||||
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netType, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
|
||||
std::vector<int> shape_pattern = {0, 1, -1, 0};
|
||||
auto shapePatternsNode = std::dynamic_pointer_cast<ngraph::Node>(
|
||||
std::make_shared<ngraph::opset3::Constant>(ngraph::element::Type_t::i64, ngraph::Shape({4}), shape_pattern));
|
||||
auto reshapeOp = std::make_shared<ngraph::opset1::Reshape>(paramOuts[0], shapePatternsNode, true);
|
||||
auto reshapeOp = std::make_shared<ngraph::opset1::Reshape>(params[0], shapePatternsNode, true);
|
||||
reshapeOp->set_friendly_name("reshape");
|
||||
|
||||
auto shapeOfOp = std::make_shared<ngraph::opset3::ShapeOf>(reshapeOp, ElementType::i32);
|
||||
|
@ -84,15 +84,13 @@ protected:
|
||||
const auto inShapeShapeOf = inputDynamicShapes[0];
|
||||
const auto inShapeElt = inputDynamicShapes[1];
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
for (auto&& shape : inputDynamicShapes)
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netType, shape));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
|
||||
auto addOp = ngraph::builder::makeEltwise(paramOuts[1], paramOuts[1], ngraph::helpers::EltwiseTypes::ADD);
|
||||
auto addOp = ngraph::builder::makeEltwise(params[1], params[1], ngraph::helpers::EltwiseTypes::ADD);
|
||||
addOp->set_friendly_name("add");
|
||||
|
||||
auto shapeOfOp1 = std::make_shared<ngraph::opset3::ShapeOf>(paramOuts[0], ElementType::i64);
|
||||
auto shapeOfOp1 = std::make_shared<ngraph::opset3::ShapeOf>(params[0], ElementType::i64);
|
||||
shapeOfOp1->set_friendly_name("shapeof1");
|
||||
std::vector<int> reduce_axes = {0};
|
||||
auto reduceAxesNode = std::dynamic_pointer_cast<ngraph::Node>(
|
||||
|
@ -91,19 +91,17 @@ protected:
|
||||
const auto AllZeroData = inputDynamicShapes[0];
|
||||
const auto ConcatInputData = inputDynamicShapes[1];
|
||||
ov::ParameterVector params;
|
||||
for (auto&& shape : {AllZeroData, ConcatInputData}) {
|
||||
for (auto&& shape : {AllZeroData, ConcatInputData})
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(netType, shape));
|
||||
}
|
||||
auto paramOuts =
|
||||
helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::opset3::Parameter>(params));
|
||||
|
||||
const ElementType intInputsPrecision = ElementType::i32;
|
||||
auto nonzeroEmptyResultOp = std::make_shared<ngraph::opset3::NonZero>(paramOuts[0]);
|
||||
auto nonzeroEmptyResultOp = std::make_shared<ngraph::opset3::NonZero>(params[0]);
|
||||
|
||||
auto convertEmptyInputOp = ngraph::builder::makeConversion(nonzeroEmptyResultOp,
|
||||
ElementType::i32,
|
||||
ngraph::helpers::ConversionTypes::CONVERT);
|
||||
auto concatPartialInputEmptyOp =
|
||||
ngraph::builder::makeConcat({convertEmptyInputOp, paramOuts[1], convertEmptyInputOp},
|
||||
ngraph::builder::makeConcat({convertEmptyInputOp, params[1], convertEmptyInputOp},
|
||||
1); // partially empty input / non empty output
|
||||
auto concatEmptyInputEmptyOutputOp =
|
||||
ngraph::builder::makeConcat({convertEmptyInputOp, convertEmptyInputOp, convertEmptyInputOp},
|
||||
@ -117,14 +115,14 @@ protected:
|
||||
|
||||
auto axisNode = ngraph::builder::makeConstant<int64_t>(intInputsPrecision, ov::Shape({1}), {0});
|
||||
auto gatherEmptyIndicesOp =
|
||||
std::make_shared<ov::op::v7::Gather>(paramOuts[0], squeezeEmptyInputOp, axisNode, 0);
|
||||
std::make_shared<ov::op::v7::Gather>(params[0], squeezeEmptyInputOp, axisNode, 0);
|
||||
auto shapeofEmptyInputOp = std::make_shared<ngraph::opset3::ShapeOf>(gatherEmptyIndicesOp, ElementType::i32);
|
||||
ngraph::ResultVector results = {std::make_shared<ngraph::opset1::Result>(shapeofEmptyInputOp),
|
||||
std::make_shared<ngraph::opset1::Result>(concatPartialInputEmptyOp),
|
||||
std::make_shared<ngraph::opset1::Result>(concatEmptyInputEmptyOutputOp)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "result");
|
||||
|
||||
auto nonzero = std::make_shared<ngraph::opset3::NonZero>(paramOuts[0]);
|
||||
auto nonzero = std::make_shared<ngraph::opset3::NonZero>(params[0]);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -1604,11 +1604,8 @@ std::shared_ptr<ov::Model> generateMultiSubGraph(const std::shared_ptr<ov::op::O
|
||||
std::shared_ptr<ov::Model> generate(const std::shared_ptr<ov::op::v8::MatrixNms> &node) {
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 2, 4}}),
|
||||
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 2, 2}})};
|
||||
|
||||
const auto outputs =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
const auto nms =
|
||||
std::make_shared<ov::op::v8::MatrixNms>(outputs[0], outputs[1], ov::op::v8::MatrixNms::Attributes());
|
||||
std::make_shared<ov::op::v8::MatrixNms>(params[0], params[1], ov::op::v8::MatrixNms::Attributes());
|
||||
ov::ResultVector results{std::make_shared<ov::op::v0::Result>(nms)};
|
||||
return std::make_shared<ov::Model>(results, params, "MatrixNms");
|
||||
}
|
||||
@ -1616,14 +1613,12 @@ std::shared_ptr<ov::Model> generate(const std::shared_ptr<ov::op::v8::MatrixNms>
|
||||
std::shared_ptr<ov::Model> generateMulticlassNmsBase(const std::shared_ptr<ov::op::Op> &node) {
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 2, 4}}),
|
||||
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 2, 2}})};
|
||||
const auto outputs =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
if (ov::is_type<ov::op::v8::MulticlassNms>(node)) {
|
||||
const auto nms = std::make_shared<ov::op::v8::MulticlassNms>(outputs[0], outputs[1], ov::op::v8::MulticlassNms::Attributes());
|
||||
const auto nms = std::make_shared<ov::op::v8::MulticlassNms>(params[0], params[1], ov::op::v8::MulticlassNms::Attributes());
|
||||
ov::ResultVector results{std::make_shared<ov::op::v0::Result>(nms)};
|
||||
return std::make_shared<ov::Model>(results, params, "MulticlassNms");
|
||||
} else if (ov::is_type<ov::op::v9::MulticlassNms>(node)) {
|
||||
const auto nms = std::make_shared<ov::op::v9::MulticlassNms>(outputs[0], outputs[1], ov::op::v9::MulticlassNms::Attributes());
|
||||
const auto nms = std::make_shared<ov::op::v9::MulticlassNms>(params[0], params[1], ov::op::v9::MulticlassNms::Attributes());
|
||||
ov::ResultVector results{std::make_shared<ov::op::v0::Result>(nms)};
|
||||
return std::make_shared<ov::Model>(results, params, "MulticlassNms");
|
||||
} else {
|
||||
@ -1808,8 +1803,6 @@ std::shared_ptr<ov::Model> generate(const std::shared_ptr<ov::op::v9::GeneratePr
|
||||
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{2, 2, 3, 4}}),
|
||||
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 12, 2, 2}}),
|
||||
std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{{1, 3, 2, 2}})};
|
||||
const auto outputs =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
ov::op::v9::GenerateProposals::Attributes attrs;
|
||||
attrs.min_size = 1;
|
||||
attrs.nms_threshold = 0.8;
|
||||
@ -1817,7 +1810,7 @@ std::shared_ptr<ov::Model> generate(const std::shared_ptr<ov::op::v9::GeneratePr
|
||||
attrs.post_nms_count = 100;
|
||||
if (ov::is_type<ov::op::v9::GenerateProposals>(node)) {
|
||||
const auto gp = std::make_shared<ov::op::v9::GenerateProposals>(
|
||||
outputs[0], outputs[1], outputs[2], outputs[3], attrs);
|
||||
params[0], params[1], params[2], params[3], attrs);
|
||||
ov::ResultVector results{std::make_shared<ov::op::v0::Result>(gp)};
|
||||
return std::make_shared<ov::Model>(results, params, "GenerateProposalsGraph");
|
||||
} else {
|
||||
|
@ -87,15 +87,14 @@ public:
|
||||
auto make_ngraph = [&](bool with_extra_conv) {
|
||||
auto in_prec = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(with_extra_conv ? inPrc : decltype(inPrc)(InferenceEngine::Precision::FP32));
|
||||
ov::ParameterVector paramsIn {std::make_shared<ov::op::v0::Parameter>(in_prec, ov::Shape(inputShape))};
|
||||
auto paramIn = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(paramsIn));
|
||||
|
||||
auto toF32 = std::make_shared<ngraph::opset1::Convert>(paramIn[0], ngraph::element::Type_t::f32);
|
||||
auto toF32 = std::make_shared<ngraph::opset1::Convert>(paramsIn[0], ngraph::element::Type_t::f32);
|
||||
|
||||
auto constNode = std::make_shared<ngraph::opset1::Constant>(
|
||||
ngraph::element::Type_t::i64, ngraph::Shape{inputShape.size()}, inputShape);
|
||||
std::shared_ptr<ov::Node> reshape_input = with_extra_conv ? toF32->shared_from_this() : paramsIn[0];
|
||||
auto reshape = std::dynamic_pointer_cast<ngraph::opset1::Reshape>(
|
||||
std::make_shared<ngraph::opset1::Reshape>(with_extra_conv ? toF32 : paramIn[0], constNode, specialZero));
|
||||
std::make_shared<ngraph::opset1::Reshape>(reshape_input, constNode, specialZero));
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(reshape)};
|
||||
return std::make_shared<ngraph::Function>(results, paramsIn, "Reshape");
|
||||
};
|
||||
|
@ -105,9 +105,8 @@ void SetBlobTest::SetUp() {
|
||||
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(precNg);
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(IS))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
auto axisNode = std::make_shared<ngraph::op::Constant>(ngraph::element::Type_t::i64, ngraph::Shape{}, std::vector<int64_t>{-1})->output(0);
|
||||
auto cumSum = std::dynamic_pointer_cast<ngraph::opset4::CumSum>(ngraph::builder::makeCumSum(paramOuts[0], axisNode, false, false));
|
||||
auto cumSum = std::dynamic_pointer_cast<ngraph::opset4::CumSum>(ngraph::builder::makeCumSum(params[0], axisNode, false, false));
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset4::Result>(cumSum)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "InferSetBlob");
|
||||
}
|
||||
|
@ -73,10 +73,9 @@ void ProposalBehTest::SetUp() {
|
||||
std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(boxesShape))};
|
||||
params[0]->set_friendly_name("scores");
|
||||
params[1]->set_friendly_name("boxes");
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto proposal = std::dynamic_pointer_cast<ngraph::opset1::Proposal>(
|
||||
ngraph::builder::makeProposal(paramOuts[0], paramOuts[1], img_info, ngPrc,
|
||||
ngraph::builder::makeProposal(params[0], params[1], img_info, ngPrc,
|
||||
base_size,
|
||||
pre_nms_topn,
|
||||
post_nms_topn,
|
||||
|
@ -62,9 +62,8 @@ namespace SubgraphTestsDefinitions {
|
||||
}
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto clamp = std::make_shared<ngraph::opset1::Clamp>(paramOuts[0], clamp_min_max[0], clamp_min_max[1]);
|
||||
auto clamp = std::make_shared<ngraph::opset1::Clamp>(params[0], clamp_min_max[0], clamp_min_max[1]);
|
||||
|
||||
auto FQNode = ngraph::builder::makeFakeQuantize(clamp, ngraph::element::f32, levels[0], constShape[0],
|
||||
{ inputDataMin }, { inputDataMax }, { inputDataMin }, { inputDataMax });
|
||||
|
@ -49,7 +49,7 @@ void ConvolutionReluSequenceTest::SetUp() {
|
||||
configuration.insert(config.begin(), config.end());
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(convParamsAll.inputShape))};
|
||||
auto lastOutputs = ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params).front();
|
||||
std::shared_ptr<ov::Node> lastOutputs = params.front();
|
||||
auto inputChannels = convParamsAll.inputShape[1];
|
||||
|
||||
for (auto&& single : convParamsAll.sequenceDesc) {
|
||||
|
@ -28,14 +28,12 @@ void MultiplyAddLayerTest::SetUp() {
|
||||
ov::element::Type element_type;
|
||||
std::tie(inputShape, element_type, targetDevice) = this->GetParam();
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(element_type, ov::PartialShape(inputShape))};
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(params));
|
||||
|
||||
std::vector<size_t> constShape(inputShape.size(), 1);
|
||||
constShape[1] = inputShape[1];
|
||||
|
||||
auto const_mul = ngraph::builder::makeConstant<float>(element_type, constShape, {}, true);
|
||||
auto mul = std::make_shared<ov::op::v1::Multiply>(paramOuts[0], const_mul);
|
||||
auto mul = std::make_shared<ov::op::v1::Multiply>(params[0], const_mul);
|
||||
auto const_add = ngraph::builder::makeConstant<float>(element_type, constShape, {}, true);
|
||||
auto add = std::make_shared<ov::op::v1::Add>(mul, const_add);
|
||||
ov::ResultVector results{std::make_shared<ov::op::v0::Result>(add)};
|
||||
|
@ -46,10 +46,8 @@ void MVNMultiplyAdd::SetUp() {
|
||||
std::tie(inputShapes, constantShapes) = shapes;
|
||||
|
||||
ov::ParameterVector param{std::make_shared<ov::op::v0::Parameter>(dataType, ov::Shape(inputShapes))};
|
||||
auto paramOuts =
|
||||
ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ov::op::v0::Parameter>(param));
|
||||
auto axesNode = ngraph::builder::makeConstant(axesType, ov::Shape{axes.size()}, axes);
|
||||
auto mvn = ngraph::builder::makeMVN6(paramOuts[0], axesNode, normalizeVariance, eps, epsMode);
|
||||
auto mvn = ngraph::builder::makeMVN6(param[0], axesNode, normalizeVariance, eps, epsMode);
|
||||
auto gamma = ngraph::builder::makeConstant<float>(dataType, constantShapes, {}, true);
|
||||
auto mul = std::make_shared<ov::op::v1::Multiply>(mvn, gamma);
|
||||
auto beta = ngraph::builder::makeConstant<float>(dataType, constantShapes, {}, true);
|
||||
|
@ -53,12 +53,11 @@ void QuantConvBackpropDataLayerTest::SetUp() {
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, padType, quantLevels, quantGranularity) = groupConvBackpropDataParams;
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
std::vector<size_t> dataFqConstShapes(inputShape.size(), 1);
|
||||
if (quantGranularity == ngraph::helpers::Perchannel)
|
||||
dataFqConstShapes[1] = inputShape[1];
|
||||
auto dataFq = ngraph::builder::makeFakeQuantize(paramOuts[0], ngPrc, quantLevels, dataFqConstShapes);
|
||||
auto dataFq = ngraph::builder::makeFakeQuantize(params[0], ngPrc, quantLevels, dataFqConstShapes);
|
||||
|
||||
std::vector<size_t> weightsShapes = {inputShape[1], convOutChannels};
|
||||
weightsShapes.insert(weightsShapes.end(), kernel.begin(), kernel.end());
|
||||
|
@ -58,12 +58,11 @@ void QuantGroupConvLayerTest::SetUp() {
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, numGroups, quantLevels, quantGranularity, quantizeWeights) = groupConvParams;
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
std::vector<size_t> dataFqConstShapes(inputShape.size(), 1);
|
||||
if (quantGranularity == ngraph::helpers::Perchannel)
|
||||
dataFqConstShapes[1] = inputShape[1];
|
||||
auto dataFq = ngraph::builder::makeFakeQuantize(paramOuts[0], ngPrc, quantLevels, dataFqConstShapes);
|
||||
auto dataFq = ngraph::builder::makeFakeQuantize(params[0], ngPrc, quantLevels, dataFqConstShapes);
|
||||
|
||||
std::vector<size_t> weightsShapes = {convOutChannels, inputShape[1]};
|
||||
if (weightsShapes[0] % numGroups || weightsShapes[1] % numGroups)
|
||||
|
@ -54,12 +54,11 @@ void QuantGroupConvBackpropDataLayerTest::SetUp() {
|
||||
std::tie(kernel, stride, padBegin, padEnd, dilation, convOutChannels, numGroups, padType, quantLevels, quantGranularity) = groupConvBackpropDataParams;
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
std::vector<size_t> dataFqConstShapes(inputShape.size(), 1);
|
||||
if (quantGranularity == ngraph::helpers::Perchannel)
|
||||
dataFqConstShapes[1] = inputShape[1];
|
||||
auto dataFq = ngraph::builder::makeFakeQuantize(paramOuts[0], ngPrc, quantLevels, dataFqConstShapes);
|
||||
auto dataFq = ngraph::builder::makeFakeQuantize(params[0], ngPrc, quantLevels, dataFqConstShapes);
|
||||
|
||||
std::vector<size_t> weightsShapes = {inputShape[1], convOutChannels};
|
||||
if (weightsShapes[0] % numGroups || weightsShapes[1] % numGroups)
|
||||
|
@ -73,8 +73,6 @@ void QuantMatMulTest::SetUp() {
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape0)),
|
||||
std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape1))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
auto makeFakeQuantizeNode = [ngPrc](size_t quantLevels, QuantRange inputRange, QuantRange outputRange,
|
||||
QuantizationGranularity quantGranularity, const ngraph::Output<ngraph::Node> &in, std::vector<size_t> inputShape,
|
||||
@ -93,8 +91,8 @@ void QuantMatMulTest::SetUp() {
|
||||
return ngraph::builder::makeFakeQuantize(in, ngPrc, quantLevels, dataFqConstShapes, inputLowData, inputHighData, outputLowData, outputHighData);
|
||||
};
|
||||
|
||||
auto dataFq0 = makeFakeQuantizeNode(quantLevels0, inputRange0, outputRange0, quantGranularity0, paramOuts[0], inputShape0, fqPrec0);
|
||||
auto dataFq1 = makeFakeQuantizeNode(quantLevels1, inputRange1, outputRange1, quantGranularity1, paramOuts[1], inputShape1, fqPrec1);
|
||||
auto dataFq0 = makeFakeQuantizeNode(quantLevels0, inputRange0, outputRange0, quantGranularity0, params[0], inputShape0, fqPrec0);
|
||||
auto dataFq1 = makeFakeQuantizeNode(quantLevels1, inputRange1, outputRange1, quantGranularity1, params[1], inputShape1, fqPrec1);
|
||||
|
||||
auto MatMul = std::dynamic_pointer_cast<ngraph::opset3::MatMul>(
|
||||
ngraph::builder::makeMatMul(dataFq0, dataFq1));
|
||||
|
@ -34,8 +34,6 @@ void ReduceEltwiseTest::SetUp() {
|
||||
std::tie(inputShape, axes, opType, keepDims, netPrecision, targetDevice) = this->GetParam();
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
std::vector<size_t> shapeAxes;
|
||||
switch (opType) {
|
||||
@ -54,7 +52,7 @@ void ReduceEltwiseTest::SetUp() {
|
||||
auto reductionAxesNode = std::dynamic_pointer_cast<ngraph::Node>(
|
||||
std::make_shared<ngraph::opset3::Constant>(ngraph::element::Type_t::i64, ngraph::Shape(shapeAxes), axes));
|
||||
|
||||
auto reduce = std::make_shared<ngraph::opset3::ReduceSum>(paramOuts[0], reductionAxesNode, keepDims);
|
||||
auto reduce = std::make_shared<ngraph::opset3::ReduceSum>(params[0], reductionAxesNode, keepDims);
|
||||
|
||||
std::vector<size_t> constShape(reduce.get()->get_output_partial_shape(0).rank().get_length(), 1);
|
||||
ASSERT_GT(constShape.size(), 2);
|
||||
|
@ -47,9 +47,7 @@ void StridedSliceTest::SetUp() {
|
||||
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(ssParams.inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(
|
||||
ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
auto relu = std::make_shared<ngraph::opset1::Relu>(paramOuts[0]);
|
||||
auto relu = std::make_shared<ngraph::opset1::Relu>(params[0]);
|
||||
auto ss = ngraph::builder::makeStridedSlice(relu, ssParams.begin, ssParams.end, ssParams.strides, ngPrc, ssParams.beginMask,
|
||||
ssParams.endMask, ssParams.newAxisMask, ssParams.shrinkAxisMask, ssParams.ellipsisAxisMask);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(ss)};
|
||||
|
@ -65,7 +65,6 @@ void FakeQuantizeSubgraphTest::SetUp() {
|
||||
}
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));
|
||||
|
||||
const int seed = 0;
|
||||
std::mt19937 gen(seed);
|
||||
@ -114,7 +113,7 @@ void FakeQuantizeSubgraphTest::SetUp() {
|
||||
auto lowNode = ngraph::builder::makeConstant(ngraph::element::f32, channelDataSize, inputMinRange, false);
|
||||
auto highNode = ngraph::builder::makeConstant(ngraph::element::f32, channelDataSize, inputMaxRange, false);
|
||||
|
||||
auto inputFQNode = ngraph::builder::makeFakeQuantize(paramOuts[0], ngraph::element::f32, levels[0], constShape[0],
|
||||
auto inputFQNode = ngraph::builder::makeFakeQuantize(params[0], ngraph::element::f32, levels[0], constShape[0],
|
||||
{ inputDataMin }, { inputDataMax }, { inputDataMin }, { inputDataMax });
|
||||
|
||||
auto weightsFQNode = std::make_shared<ngraph::opset1::FakeQuantize>(const_param,
|
||||
|
Loading…
Reference in New Issue
Block a user