diff --git a/model-optimizer/extensions/analysis/tf_yolo.py b/model-optimizer/extensions/analysis/tf_yolo.py index 1b6bf0237f6..ecf44d102af 100644 --- a/model-optimizer/extensions/analysis/tf_yolo.py +++ b/model-optimizer/extensions/analysis/tf_yolo.py @@ -86,7 +86,7 @@ class TensorFlowYOLOV1V2Analysis(AnalyzeAction): "\t--input_model /.pb\n" \ "\t--batch 1\n" \ "\t--tensorflow_use_custom_operations_config /deployment_tools/model_optimizer/extensions/front/tf/.json\n" \ - "All detailed information about conversion of this model can be fount at\n" \ + "All detailed information about conversion of this model can be found at\n" \ "https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html" return {'model_type': {'YOLO': get_YOLO_params_by_flavor(flavor)}}, message else: @@ -113,7 +113,7 @@ class TensorFlowYOLOV3Analysis(AnalyzeAction): "\t--input_model /yolo_v3.pb\n" \ "\t--batch 1\n" \ "\t--tensorflow_use_custom_operations_config /deployment_tools/model_optimizer/extensions/front/tf/yolo_v3.json\n" \ - "Detailed information about conversion of this model can be fount at\n" \ + "Detailed information about conversion of this model can be found at\n" \ "https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html" return {'model_type': {'YOLO': get_YOLO_params_by_flavor(flavor)}}, message else: diff --git a/model-optimizer/extensions/back/ShuffleChannelPatternOptimization.py b/model-optimizer/extensions/back/ShuffleChannelPatternOptimization.py index 20bba37c6c5..2ee151bfb6c 100644 --- a/model-optimizer/extensions/back/ShuffleChannelPatternOptimization.py +++ b/model-optimizer/extensions/back/ShuffleChannelPatternOptimization.py @@ -138,7 +138,7 @@ class ShuffleChannelFusion(BackReplacementPattern): We are able to perform the fusion if the pattern satisfies the conditions: 1. Pattern input 4D shape is the same as pattern output 4D shape 2. First Reshape splits channel dimension (1 axis) into two dimensions - 3. Transpose permutes only splitted dimensions + 3. Transpose permutes only split dimensions 4. Second Reshape pack them back Fixes original models reshape-ability (Smart reshape) @@ -208,7 +208,7 @@ class DepthToSpaceFusion(BackReplacementPattern): We are able to perform the fusion if the pattern satisfies the conditions: 1. Pattern has 6D input and 4D output 2. First Reshape splits channel dimension (1 axis) into three dimensions [new_depth, block_size, block_size] - 3. Transpose permutes splitted dimensions with spatial ones + 3. Transpose permutes split dimensions with spatial ones 4. Second Reshape pack block size together with spatial dimension Fixes original models reshape-ability (Smart reshape) diff --git a/model-optimizer/extensions/back/SpecialNodesFinalization.py b/model-optimizer/extensions/back/SpecialNodesFinalization.py index 57d376f17b2..cd1e599485d 100644 --- a/model-optimizer/extensions/back/SpecialNodesFinalization.py +++ b/model-optimizer/extensions/back/SpecialNodesFinalization.py @@ -80,7 +80,7 @@ class CreateConstNodesReplacement(BackReplacementPattern): def replace_pattern(self, graph: Graph, match: dict): """ Adds layers with type 'Const' that produce blob from 'bin' file. The pass finds data nodes with one output which - doesn't have edge with 'bin' attribute (or with two outputs and at least one output havent 'bin' attr) + doesn't have edge with 'bin' attribute (or with two outputs and at least one output doesn't have 'bin' attr) and generate Const op node before the node and data node before the Const node. The data node before 'Const' node is needed because the op node dumps input tensors to bin file. """ diff --git a/model-optimizer/extensions/front/kaldi/memory_offset_adjustment.py b/model-optimizer/extensions/front/kaldi/memory_offset_adjustment.py index abeab5b5dd9..b1f7d1e0e2b 100644 --- a/model-optimizer/extensions/front/kaldi/memory_offset_adjustment.py +++ b/model-optimizer/extensions/front/kaldi/memory_offset_adjustment.py @@ -88,7 +88,7 @@ class MemoryOffsetAdjustment(FrontReplacementSubgraph): \ | \ | Concat - In Left branch we have MemoryOffset with k > 0 so we wait until kth frame will be calcualted. In right branch + In Left branch we have MemoryOffset with k > 0 so we wait until kth frame will be calculated. In right branch we have no such offsets. As result we Concat (or use in any calculations with more than 1 input) kth frame from left branch and 0th from right branch. So we need to add synchronization before Concat node. it can be done with MemoryOffset(k) inserted before Concat. diff --git a/model-optimizer/extensions/front/mxnet/ssd_anchor_reshape.py b/model-optimizer/extensions/front/mxnet/ssd_anchor_reshape.py index c109102b0d1..efa94aa3263 100644 --- a/model-optimizer/extensions/front/mxnet/ssd_anchor_reshape.py +++ b/model-optimizer/extensions/front/mxnet/ssd_anchor_reshape.py @@ -29,7 +29,7 @@ from mo.ops.const import Const class SsdPatternAnchorReshape(FrontReplacementSubgraph): """ Find ssd anchors and setup variants values. - Need to provide compatibility wit IE DetectionOutpyt layer. + Need to provide compatibility with IE DetectionOutput layer. """ enabled = True graph_condition = [lambda graph: graph.graph['fw'] == 'mxnet' and graph.graph['cmd_params'].enable_ssd_gluoncv] diff --git a/model-optimizer/extensions/front/onnx/upsample_ext.py b/model-optimizer/extensions/front/onnx/upsample_ext.py index f01b092eb6f..bb38dc320db 100644 --- a/model-optimizer/extensions/front/onnx/upsample_ext.py +++ b/model-optimizer/extensions/front/onnx/upsample_ext.py @@ -52,7 +52,7 @@ class UpsampleFrontExtractor(FrontExtractorOp): ) if math.fabs(scales[0] - 1) > 1e-5 or math.fabs(scales[1] - 1) > 1e-5: raise Error( - 'Upsampling of batch and feature dimentions is not supported for node {}.', + 'Upsampling of batch and feature dimensions is not supported for node {}.', node.name ) height_scale = scales[2] diff --git a/model-optimizer/extensions/front/onnx/upsample_ext_test.py b/model-optimizer/extensions/front/onnx/upsample_ext_test.py index fd0dcd22eb8..987378c36ce 100644 --- a/model-optimizer/extensions/front/onnx/upsample_ext_test.py +++ b/model-optimizer/extensions/front/onnx/upsample_ext_test.py @@ -73,7 +73,7 @@ class UpsampleONNXExtractorTest(BaseExtractorsTestingClass): def test_invalid_scales(self): inp, ref = self._base_attrs() inp['scales'] = [1.5, 1.5, 2.0, 2.0] - with self.assertRaisesRegex(Error, '.*Upsampling of batch and feature dimentions is not supported for node.*'): + with self.assertRaisesRegex(Error, '.*Upsampling of batch and feature dimensions is not supported for node.*'): out = self._extract(inp) def test_invalid_2D_scales(self): diff --git a/model-optimizer/extensions/front/tf/FlattenToReshape.py b/model-optimizer/extensions/front/tf/FlattenToReshape.py index 00927ba503a..ff0ee122186 100644 --- a/model-optimizer/extensions/front/tf/FlattenToReshape.py +++ b/model-optimizer/extensions/front/tf/FlattenToReshape.py @@ -37,7 +37,7 @@ def is_value_is_constant(val: np.ndarray, const: [int, float]): class FlattenToReshapeableReshape(FrontReplacementSubgraph): """ The TensorFlow implementation of the Flatten operation is not reshape-able because the batch size is hardcoded - during te constant propagation. This transform sets the 'dim' attribute for the Reshape to [0, -1]. + during the constant propagation. This transform sets the 'dim' attribute for the Reshape to [0, -1]. """ enabled = True diff --git a/model-optimizer/extensions/middle/BinarizeWeightsM1P1.py b/model-optimizer/extensions/middle/BinarizeWeightsM1P1.py index a8fd946ab45..881b6b2d2b8 100644 --- a/model-optimizer/extensions/middle/BinarizeWeightsM1P1.py +++ b/model-optimizer/extensions/middle/BinarizeWeightsM1P1.py @@ -46,7 +46,7 @@ class BinarizeWeightsM1P1(MiddleReplacementPattern): transparent. #TODO Describe how to apply multiplication at output ports -- this is not specified. In the current definition - we can pass through only scalar multiplication, but we already requre passing it channel-wise. + we can pass through only scalar multiplication, but we already require passing it channel-wise. """ enabled = True diff --git a/model-optimizer/extensions/middle/BlockLSTMtoLSTMSequence.py b/model-optimizer/extensions/middle/BlockLSTMtoLSTMSequence.py index 864ae66bbc3..25e11a7c463 100644 --- a/model-optimizer/extensions/middle/BlockLSTMtoLSTMSequence.py +++ b/model-optimizer/extensions/middle/BlockLSTMtoLSTMSequence.py @@ -110,7 +110,7 @@ class BlockLSTMtoLSTMSequence(MiddleReplacementPattern): concatenated cell states over the whole time sequence -> last cell state BlockLSTM - || out 1 (concatenated cell states comming out of BlockLSTM) + || out 1 (concatenated cell states coming out of BlockLSTM) \/ in 1 ConcatV2 || (concatenation with initial state or another unused data) @@ -265,10 +265,10 @@ class BlockLSTMtoLSTMSequence(MiddleReplacementPattern): list_of_concatenated_hidden_states_children_node_ids.append(node.id) if len(list_of_concatenated_hidden_states_children_node_ids) != 1: - return # not supported placement of patten + return # not supported placement of pattern conacenated_child_node_id = list_of_concatenated_hidden_states_children_node_ids[0] if conacenated_child_node_id != match['after_mul_op_to_the_rest_of_model'].id: - return # not supported placement of patten + return # not supported placement of pattern gather_indexes = match['gather_0'].in_node(1).value if len(gather_indexes) == 1: diff --git a/model-optimizer/extensions/middle/ONNXRNNSequenceNormalize.py b/model-optimizer/extensions/middle/ONNXRNNSequenceNormalize.py index 7ead6adb8d5..a94b9af116d 100644 --- a/model-optimizer/extensions/middle/ONNXRNNSequenceNormalize.py +++ b/model-optimizer/extensions/middle/ONNXRNNSequenceNormalize.py @@ -24,7 +24,7 @@ from mo.ops.op import Op class ONNXRNNSequenceNormalize(MiddleReplacementPattern): """ Convert blobs and shapes of ONNX-like LSTM, GRU, RNN cells to common form (internal for MO). - After this normalization pass passes for spliting bidirectional calls and + After this normalization pass passes for splitting bidirectional calls and multilayer cells will be applied. This transformation pass involves weights and shapes processing only: diff --git a/model-optimizer/extensions/middle/ReluQuantizeFuse.py b/model-optimizer/extensions/middle/ReluQuantizeFuse.py index 3c2493874da..f581e8f6c6f 100644 --- a/model-optimizer/extensions/middle/ReluQuantizeFuse.py +++ b/model-optimizer/extensions/middle/ReluQuantizeFuse.py @@ -142,7 +142,7 @@ class ClampQuantizeMark(MiddleReplacementPattern): return max_value = quantize.in_port(2).data.get_value() if max_value is None: - log.debug('ReluQuantizeFuse: cannot fuse because FakeQuantize op has dynamic input on the 2st port, ' + log.debug('ReluQuantizeFuse: cannot fuse because FakeQuantize op has dynamic input on the 2nd port, ' 'levels=`{}`'.format(quantize.levels)) return if np.all(min_value >= clamp_min) and np.all(max_value <= clamp_max): diff --git a/model-optimizer/extensions/middle/TensorIteratorInput.py b/model-optimizer/extensions/middle/TensorIteratorInput.py index 4a54844517f..c37efb18868 100644 --- a/model-optimizer/extensions/middle/TensorIteratorInput.py +++ b/model-optimizer/extensions/middle/TensorIteratorInput.py @@ -144,7 +144,7 @@ class SmartInputMatcher(MiddleReplacementPattern): if shape['kind'] == 'op' and shape['op'] == 'Const': start = 0 end = shape.value[0] - log.warning("You network cannot be reshaped since shapes of placeholders is a contants." + log.warning("Your network cannot be reshaped since shapes of placeholders are constants." "Please, provide non-constant shapes. ") # Create input node with params diff --git a/model-optimizer/extensions/middle/permute_tensor_iterator.py b/model-optimizer/extensions/middle/permute_tensor_iterator.py index 28107f47f47..00df4034de6 100644 --- a/model-optimizer/extensions/middle/permute_tensor_iterator.py +++ b/model-optimizer/extensions/middle/permute_tensor_iterator.py @@ -186,7 +186,7 @@ class TransposeTensorIteratorLSTM(MiddleReplacementPattern): assert len(data_output_port) == 1 data_input_port = data_input_port[0] data_output_port = data_output_port[0] - # Verify that they are really connected to Transpose layers (guarantied by port numbers of TI, see the pattern) + # Verify that they are really connected to Transpose layers (guaranteed by port numbers of TI, see the pattern) assert ti.in_edge(0)['external_port_id'] == ti.input_port_map[data_input_port]['external_port_id'] assert ti.out_edge(0)['external_port_id'] == ti.output_port_map[data_output_port]['external_port_id'] diff --git a/model-optimizer/extensions/middle/reverse_tensor_iterator.py b/model-optimizer/extensions/middle/reverse_tensor_iterator.py index 68e8b7c6227..643dd6bae46 100644 --- a/model-optimizer/extensions/middle/reverse_tensor_iterator.py +++ b/model-optimizer/extensions/middle/reverse_tensor_iterator.py @@ -101,7 +101,7 @@ class ReverseTensorIteratorLSTM(MiddleReplacementPattern): if not self.is_fusable_reverse_sequence(direct_reverse) or \ not self.is_fusable_reverse_sequence(inverse_reverse): - # we can not merge ReverseSequence with ot equal sequences + # we can not merge ReverseSequence without equal sequences return # Modify stride in TI diff --git a/model-optimizer/extensions/ops/fakequantize.py b/model-optimizer/extensions/ops/fakequantize.py index b725f79f7fa..42b71744906 100644 --- a/model-optimizer/extensions/ops/fakequantize.py +++ b/model-optimizer/extensions/ops/fakequantize.py @@ -66,7 +66,7 @@ class FakeQuantize(Op): inputs = [node.in_node(i) for i in range(5)] x, input_low, input_high, output_low, output_high = inputs assert x.has_valid('shape') - # TODO Check all input[1..4] shapes are broadcastable to intput[0] shape + # TODO Check all inputs[1..4] shapes are broadcastable to inputs[0] shape assert all([broadcastable(inputs[i].shape, inputs[0].shape) for i in range(1, 5)]), \ "Not all shapes from FakeQuantize inputs can be broadcasted to input[0] for node {}".format( node.soft_get('name')) diff --git a/model-optimizer/extensions/ops/sparse_reshape.py b/model-optimizer/extensions/ops/sparse_reshape.py index 18c1d062af4..53c77532d0f 100644 --- a/model-optimizer/extensions/ops/sparse_reshape.py +++ b/model-optimizer/extensions/ops/sparse_reshape.py @@ -61,6 +61,6 @@ class SparseReshape(Op): output_indices_shape = np.concatenate((input_indices_shape[0:1], new_shape_shape)) node.out_port(0).data.set_shape(output_indices_shape) - # TODO: implement constant value propogation for common case + # TODO: implement constant value propagation for common case if np.array_equal(input_shape_value, output_shape_value) and input_indices_value is not None: node.out_port(0).data.set_value(input_indices_value) diff --git a/model-optimizer/extensions/ops/sparse_segment_sqrtn.py b/model-optimizer/extensions/ops/sparse_segment_sqrtn.py index f2b83619f30..a9934851e3c 100644 --- a/model-optimizer/extensions/ops/sparse_segment_sqrtn.py +++ b/model-optimizer/extensions/ops/sparse_segment_sqrtn.py @@ -28,7 +28,7 @@ class SparseSegmentSqrtN(Op): - [0, required] Data tensor from which rows are selected for the sum divided by sqrt of N (ND), - [1, required] Tensor of indices of selected rows from the first input tensor along 0 dimension (1D), - [2, required] Tensor of segment IDs to which selected rows belong. - Selected rows beloging to the same segment are summed up. The tensor has the same size as the second input. + Selected rows belonging to the same segment are summed up. The tensor has the same size as the second input. Values must be sorted and can be repeated. (1D). One output: diff --git a/model-optimizer/extensions/ops/sparse_segment_sum.py b/model-optimizer/extensions/ops/sparse_segment_sum.py index 18db477248d..4cbf3291350 100644 --- a/model-optimizer/extensions/ops/sparse_segment_sum.py +++ b/model-optimizer/extensions/ops/sparse_segment_sum.py @@ -28,7 +28,7 @@ class SparseSegmentSum(Op): - [0, required] Data tensor from which rows are selected for the sum (ND), - [1, required] Tensor of indices of selected rows from the first input tensor along 0 dimension (1D), - [2, required] Tensor of segment IDs to which selected rows for the sum belong. - Selected rows beloging to the same segment are summed up. The tensor has the same size as the second input. + Selected rows belonging to the same segment are summed up. The tensor has the same size as the second input. Values must be sorted and can be repeated. (1D). One output: diff --git a/model-optimizer/extensions/ops/split.py b/model-optimizer/extensions/ops/split.py index 5cefb616115..dc618499479 100644 --- a/model-optimizer/extensions/ops/split.py +++ b/model-optimizer/extensions/ops/split.py @@ -110,10 +110,10 @@ class VariadicSplitBase(Op): # value propagation input_value = node.in_port(0).data.get_value() if input_value is not None: - splitted = np.split(input_value, idxs[:-1], axis) + split = np.split(input_value, idxs[:-1], axis) for i, port in node.out_ports().items(): if not port.disconnected(): - port.data.set_value(splitted[i]) + port.data.set_value(split[i]) if op == 'VariadicSplit': PermuteInputs().set_input_permutation(node.in_node(1), node, 'input:0', 'axis') diff --git a/model-optimizer/extensions/ops/tensor_iterator.py b/model-optimizer/extensions/ops/tensor_iterator.py index c211ce7b390..9dd801a9b4f 100644 --- a/model-optimizer/extensions/ops/tensor_iterator.py +++ b/model-optimizer/extensions/ops/tensor_iterator.py @@ -213,7 +213,7 @@ class TensorIterator(Op): internal_node = node_map[internal_node_id] if internal_node.soft_get('type') != 'Result': - # this output wont get out of the body, but it is still Result and needed on non first iterations of TI + # this output won't get out of the body, but it is still Result and needed on non first iterations of TI assert 'from_port' in record out_port = TensorIterator.special_port_to_real_port(internal_node, record['from_port'], 'out') assert out_port in internal_node.out_ports() and not internal_node.out_port(out_port).disconnected() @@ -300,7 +300,7 @@ class TensorIterator(Op): def generate_port_map(node: Node, src_port_map): """ Extract port_map attributes from node and node.body attributes. - It iterates over src_port_map and substitude external_port_id, internal_port_id and + It iterates over src_port_map and substitute external_port_id, internal_port_id and internal_layer_id by real values queried from node ports and node.body attributes. """ result_list = [] diff --git a/model-optimizer/extensions/ops/unique.py b/model-optimizer/extensions/ops/unique.py index 35b367ffef4..5047dca4688 100644 --- a/model-optimizer/extensions/ops/unique.py +++ b/model-optimizer/extensions/ops/unique.py @@ -38,7 +38,7 @@ class Unique(Op): and sorted in the same order as in the input (1D) - [1, optional] tensor of indices for each value of the input in the tensor of unique elements (1D) - - [2, optional] tensor with a number of occurences for each unique element + - [2, optional] tensor with a number of occurrences for each unique element in the input (1D) ''' op = 'Unique' diff --git a/model-optimizer/mo/back/ie_ir_ver_2/emitter.py b/model-optimizer/mo/back/ie_ir_ver_2/emitter.py index 275e32843af..d37f3d8164d 100644 --- a/model-optimizer/mo/back/ie_ir_ver_2/emitter.py +++ b/model-optimizer/mo/back/ie_ir_ver_2/emitter.py @@ -36,7 +36,7 @@ def serialize_constants(graph: Graph, bin_file_name:str, data_type=np.float32): Args: @graph: input graph with op and data nodes @bin_file_name: path to file to write blobs to - @data_type: numpy data type to convert all blob elemnts to + @data_type: numpy data type to convert all blob elements to """ bin_hashes = {} @@ -392,7 +392,7 @@ def generate_ie_ir(graph: Graph, file_name: str, input_names: tuple = (), mean_o mean_size: tuple = (), meta_info: dict = dict()): """ Extracts IE/IR attributes from kind='op' nodes in three ways: - (1) node.IE xml scheme that set correspondance from existing attributes to generated xml elements + (1) node.IE xml scheme that sets correspondence from existing attributes to generated xml elements (2) input/output edges that don't have 'bin' attributes are transformed to input/output ports (3) input edges that has 'bin' attributes are handled in special way like weights/biases diff --git a/model-optimizer/mo/front/caffe/loader.py b/model-optimizer/mo/front/caffe/loader.py index 2af5a3be4b7..a2c70da665e 100644 --- a/model-optimizer/mo/front/caffe/loader.py +++ b/model-optimizer/mo/front/caffe/loader.py @@ -99,12 +99,12 @@ def load_caffe_proto_model(caffe_pb2, proto_path: str, model_path: [str, None] = from google.protobuf.pyext import cpp_message # Check os windows and env variable PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION if os.name == 'nt' and os.environ.get('PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION', default='') != 'cpp': - # 2. cpp implementaion is available but not used + # 2. cpp implementation is available but not used message += 'However, cpp implementation is available, you can boost ' \ 'model conversion by setting PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION env variable to cpp. \n' \ 'Run: set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp \n' except ImportError: - # 3. cpp implementaion is not available + # 3. cpp implementation is not available message += 'However you can use the C++ protobuf implementation that is supplied with the OpenVINO toolkit' \ 'or build protobuf library from sources. \n' \ 'Navigate to "install_prerequisites" folder and run: ' \ diff --git a/model-optimizer/mo/front/common/partial_infer/concat.py b/model-optimizer/mo/front/common/partial_infer/concat.py index 6addde984b8..e68b39a01ce 100644 --- a/model-optimizer/mo/front/common/partial_infer/concat.py +++ b/model-optimizer/mo/front/common/partial_infer/concat.py @@ -59,7 +59,7 @@ def concat_infer(node): node.out_node(0).shape = shape if len(shape) != 4: - # exclude it from NHWC to NCHW convertion + # exclude it from NHWC to NCHW conversion if 'axis' in node.dim_attrs: node.dim_attrs.remove('axis') diff --git a/model-optimizer/mo/graph/graph.py b/model-optimizer/mo/graph/graph.py index fa7baf7a234..a290ca43122 100644 --- a/model-optimizer/mo/graph/graph.py +++ b/model-optimizer/mo/graph/graph.py @@ -105,7 +105,7 @@ class Node: # no handling of control flow edges -- TODO control_flow = False if not skip_if_absent and idx not in self.in_ports(control_flow=control_flow): - raise Error("Input port with index {} does't exist in node {}.".format(idx, self.soft_get('name'))) + raise Error("Input port with index {} doesn't exist in node {}.".format(idx, self.soft_get('name'))) if not self.in_port(idx).disconnected(): self.in_port(idx).disconnect() del self._in_ports[idx] diff --git a/model-optimizer/mo/middle/passes/conv.py b/model-optimizer/mo/middle/passes/conv.py index 34ad656a767..d603d4b6bd3 100644 --- a/model-optimizer/mo/middle/passes/conv.py +++ b/model-optimizer/mo/middle/passes/conv.py @@ -117,7 +117,7 @@ def muladd_to_scaleshift_action(graph: Graph, match: dict): weights.shape = np.array(weights.value.shape, dtype=np.int64) if bias.shape != weights.shape: - log.warning('Mul->Add to ScaleShift conversion stoped {} != {}'.format(weights.shape, bias.shape)) + log.warning('Mul->Add to ScaleShift conversion stopped {} != {}'.format(weights.shape, bias.shape)) return if bias.value.ndim != weights.value.ndim or bias.value.size != weights.value.size: diff --git a/model-optimizer/mo/middle/passes/fusing/fuse_grouped_conv.py b/model-optimizer/mo/middle/passes/fusing/fuse_grouped_conv.py index 97d7abf864a..506435b9d0d 100644 --- a/model-optimizer/mo/middle/passes/fusing/fuse_grouped_conv.py +++ b/model-optimizer/mo/middle/passes/fusing/fuse_grouped_conv.py @@ -46,7 +46,7 @@ def concat_convolutions(graph: Graph, start_node: Node, last_node: Node): channel_dim = gconv.channel_dims[0] split_axis = start_node.in_port(1).data.get_value() if channel_dim != split_axis or channel_dim != last_node.axis: - log.debug('Grouped convolutions fusion : split or concat has wierd axis!') + log.debug('Grouped convolutions fusion : split or concat has weird axis!') return False # Check that all convolutions has the same parameters diff --git a/model-optimizer/mo/middle/passes/leaky_relu.py b/model-optimizer/mo/middle/passes/leaky_relu.py index d2e417b292d..7bd520b16c7 100644 --- a/model-optimizer/mo/middle/passes/leaky_relu.py +++ b/model-optimizer/mo/middle/passes/leaky_relu.py @@ -23,7 +23,7 @@ from mo.middle.pattern_match import apply_pattern def _convert_to_leaky_relu_action(graph: Graph, matches: dict): """ - This function checks given patten and if pattern satisfies all requirements, converts to ReLU with negative slope + This function checks given pattern and if pattern satisfies all requirements, converts to ReLU with negative slope """ mul_op = matches['mul_op'] mul_value_data = matches['const_data'] diff --git a/model-optimizer/mo/middle/pattern_match.py b/model-optimizer/mo/middle/pattern_match.py index 7c77ec9a538..202fd310141 100644 --- a/model-optimizer/mo/middle/pattern_match.py +++ b/model-optimizer/mo/middle/pattern_match.py @@ -111,7 +111,7 @@ def check_node_usages_out_of_match(match: dict, node_name_in_match_group: str): def node_match(data1: dict, data2: dict): - # We have to skip _in_ports/_out_ports attributes for comparision as they are not comparable + # We have to skip _in_ports/_out_ports attributes for comparison as they are not comparable return dict_includes(data1, data2, skip_attr_names=['_in_ports', '_out_ports']) diff --git a/model-optimizer/mo/ops/convolution.py b/model-optimizer/mo/ops/convolution.py index 55823c59190..6082240cdbf 100644 --- a/model-optimizer/mo/ops/convolution.py +++ b/model-optimizer/mo/ops/convolution.py @@ -114,7 +114,7 @@ class Convolution(Op): weights_index = node.weights_index if node.has_valid('weights_index') else 1 # Reshape weights kernel to original shape - # In case of caffe ot MXNet framework, values for weights has no structed shape like OIHW + # In case of caffe or MXNet framework, values for weights have no structured shape like OIHW # so we have to reshape weights to normal shape # For this case, Convolution node should have attribute reshape_kernel = True if node.has_valid('reshape_kernel') and node.reshape_kernel: diff --git a/model-optimizer/mo/ops/memoryoffset.py b/model-optimizer/mo/ops/memoryoffset.py index f91922746cd..05df30c43d9 100644 --- a/model-optimizer/mo/ops/memoryoffset.py +++ b/model-optimizer/mo/ops/memoryoffset.py @@ -40,7 +40,7 @@ class MemoryOffset(Op): @staticmethod def infer(node: Node): - # MemoryOffset is splitted in 2 parts to avoid cycle in graph + # MemoryOffset is split into 2 parts to avoid cycle in graph # Calculate shape from shape of previous layer where possible # In other cases information about shapes from initial Kaldi model used if not node.in_port(0).disconnected(): diff --git a/model-optimizer/mo/pipeline/common.py b/model-optimizer/mo/pipeline/common.py index 55a7fac24ff..65e28cfb33b 100644 --- a/model-optimizer/mo/pipeline/common.py +++ b/model-optimizer/mo/pipeline/common.py @@ -110,7 +110,7 @@ def collect_sub_graphs(graph: Graph): def relabel_nodes_inplace_safe(graph: Graph, new_labels: dict): """ Safely relabels graph in-place without graph copy. - Safety in this place means that it is guarantied that + Safety in this place means that it is guaranteed that there won't be collisions during relabeling process. """ # Relabel nodes in two stages diff --git a/model-optimizer/mo/utils/ir_engine/ir_engine_test.py b/model-optimizer/mo/utils/ir_engine/ir_engine_test.py index 97cb91e8298..2abbf2c1620 100644 --- a/model-optimizer/mo/utils/ir_engine/ir_engine_test.py +++ b/model-optimizer/mo/utils/ir_engine/ir_engine_test.py @@ -49,7 +49,7 @@ class TestFunction(unittest.TestCase): test_data = test_data self.assertEqual(IREngine._IREngine__isfloat(test_data), result, "Function __isfloat is not working with value: {}".format(test_data)) - log.info('Test for function __is_float passed wit value: {}, expected result: {}'.format(test_data, result)) + log.info('Test for function __is_float passed with value: {}, expected result: {}'.format(test_data, result)) # TODO add comparison not for type IREngine def test_compare(self): @@ -63,7 +63,7 @@ class TestFunction(unittest.TestCase): # Check function: flag, msg = self.IR.compare(self.IR_negative) self.assertFalse(flag, 'Comparing flag failed, test compare function failed') - self.assertEqual('\n'.join(msg), reference_msg, 'Comparing message failes, test compare negative failed') + self.assertEqual('\n'.join(msg), reference_msg, 'Comparing message failed, test compare negative failed') log.info('Test for function compare passed') @@ -125,7 +125,7 @@ class TestFunction(unittest.TestCase): ti_nodes = IR.graph.get_op_nodes(type='TensorIterator') for ti in ti_nodes: if not ti.has_valid('body'): - log.error('TensorIterator has not body attrubite for node: {}'.format(ti.name)) + log.error("TensorIterator doesn't have body attribute for node: {}".format(ti.name)) else: const_ti_nodes = ti.body.graph.get_op_nodes(type='Const') for node in const_ti_nodes: diff --git a/model-optimizer/mo/utils/ir_reader/layer_to_class.py b/model-optimizer/mo/utils/ir_reader/layer_to_class.py index 060bf8bed6b..4694b2891c2 100644 --- a/model-optimizer/mo/utils/ir_reader/layer_to_class.py +++ b/model-optimizer/mo/utils/ir_reader/layer_to_class.py @@ -41,7 +41,7 @@ from mo.utils.class_registration import update_registration from mo.utils.import_extensions import import_by_path from mo.utils.ir_reader.extender import Extender -# Operations not registred in collect_ops() function +# Operations not registered in collect_ops() function custom_ops = { 'AvgPool': Pooling, 'BiasAdd': BiasAdd, @@ -272,7 +272,7 @@ def copy_graph_with_ops(graph: Graph) -> Graph: """ Function to copy graph and apply extenders to appropriate nodes :param graph: Graph to copy - :return:Copied graph with applyed extenders + :return:Copied graph with applied extenders """ new_graph = Graph() new_graph.stage = 'back'