[tests] resolves skipped HF tests: 3rd batch (#21678)
* resolves skipped HF tests: 3rd batch * remove comments * minor corrections * replace example input *argc -> **kwargc * use config instead of dict in example input * add kwargs
This commit is contained in:
parent
c087fb4206
commit
137180bce5
@ -252,14 +252,14 @@ microsoft/speecht5_tts,speecht5,xfail,Tracing error: hangs with no error (probab
|
|||||||
microsoft/swinv2-tiny-patch4-window8-256,swinv2
|
microsoft/swinv2-tiny-patch4-window8-256,swinv2
|
||||||
microsoft/table-transformer-detection,table-transformer
|
microsoft/table-transformer-detection,table-transformer
|
||||||
microsoft/wavlm-large,wavlm,skip,Load problem
|
microsoft/wavlm-large,wavlm,skip,Load problem
|
||||||
microsoft/xclip-base-patch32,xclip,skip,Load problem
|
microsoft/xclip-base-patch32,xclip
|
||||||
microsoft/xprophetnet-large-wiki100-cased,xlm-prophetnet
|
microsoft/xprophetnet-large-wiki100-cased,xlm-prophetnet
|
||||||
miguelvictor/python-fromzero-lstmlm,lstmlm,skip,Load problem
|
miguelvictor/python-fromzero-lstmlm,lstmlm,skip,Load problem
|
||||||
mingzi151/test-hf-wav2vec2bert,wav2vec2bert,skip,Load problem
|
mingzi151/test-hf-wav2vec2bert,wav2vec2bert,skip,Load problem
|
||||||
MIT/ast-finetuned-audioset-10-10-0.4593,audio-spectrogram-transformer,skip,Load problem
|
MIT/ast-finetuned-audioset-10-10-0.4593,audio-spectrogram-transformer
|
||||||
Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime,luke
|
Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime,luke
|
||||||
mlml-chip/thyme2_colon_e2e,cnlpt,skip,Load problem
|
mlml-chip/thyme2_colon_e2e,cnlpt,skip,Load problem
|
||||||
mnaylor/mega-base-wikitext,mega,skip,Load problem
|
mnaylor/mega-base-wikitext,mega,xfail,Tracing error: Please check correctness of provided example_input (but eval was correct)
|
||||||
mohitsha/tiny-random-testing-bert2gpt2,encoder-decoder
|
mohitsha/tiny-random-testing-bert2gpt2,encoder-decoder
|
||||||
MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli,deberta-v2
|
MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli,deberta-v2
|
||||||
MoritzLaurer/ernie-m-large-mnli-xnli,ernie_m
|
MoritzLaurer/ernie-m-large-mnli-xnli,ernie_m
|
||||||
@ -267,7 +267,7 @@ mrm8488/prunebert-base-uncased-finepruned-topK-squadv2,masked_bert,skip,Load pro
|
|||||||
muditb/headline_classifier,BertModel,skip,Load problem
|
muditb/headline_classifier,BertModel,skip,Load problem
|
||||||
nanashi161382/clip-text-deprojector,clip_text_deprojector_model,skip,Load problem
|
nanashi161382/clip-text-deprojector,clip_text_deprojector_model,skip,Load problem
|
||||||
nateraw/vit-age-classifier,vit
|
nateraw/vit-age-classifier,vit
|
||||||
naver-clova-ocr/bros-base-uncased,bros,skip,Load problem
|
naver-clova-ocr/bros-base-uncased,bros
|
||||||
navervision/CompoDiff-Aesthetic,CompoDiff,skip,Load problem
|
navervision/CompoDiff-Aesthetic,CompoDiff,skip,Load problem
|
||||||
navervision/KELIP,kelip,skip,Load problem
|
navervision/KELIP,kelip,skip,Load problem
|
||||||
NCAI/NCAI-BERT,lean_albert,skip,Load problem
|
NCAI/NCAI-BERT,lean_albert,skip,Load problem
|
||||||
@ -292,7 +292,7 @@ openai/jukebox-1b-lyrics,jukebox,skip,Load problem
|
|||||||
openai/whisper-medium,whisper,skip,Load problem
|
openai/whisper-medium,whisper,skip,Load problem
|
||||||
openai-gpt,openai-gpt
|
openai-gpt,openai-gpt
|
||||||
OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1,gpt_neox_reward_model,skip,Load problem
|
OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1,gpt_neox_reward_model,skip,Load problem
|
||||||
openmmlab/upernet-convnext-small,upernet,skip,Load problem
|
openmmlab/upernet-convnext-small,upernet
|
||||||
openMUSE/clip-vit-large-patch14-text-enc,clip_text_model,skip,Load problem
|
openMUSE/clip-vit-large-patch14-text-enc,clip_text_model,skip,Load problem
|
||||||
OpenVINO/opt-125m-gptq,opt
|
OpenVINO/opt-125m-gptq,opt
|
||||||
PatrickHaller/ngme-llama-264M,ngme,skip,Load problem
|
PatrickHaller/ngme-llama-264M,ngme,skip,Load problem
|
||||||
@ -325,7 +325,7 @@ sciki/finetune_tinybert,finetune-tinybert,skip,Load problem
|
|||||||
sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco,ColBERT,skip,Load problem
|
sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco,ColBERT,skip,Load problem
|
||||||
sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco,BERT_Cat,skip,Load problem
|
sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco,BERT_Cat,skip,Load problem
|
||||||
sebastian-hofstaetter/idcm-distilbert-msmarco_doc,IDCM,skip,Load problem
|
sebastian-hofstaetter/idcm-distilbert-msmarco_doc,IDCM,skip,Load problem
|
||||||
SenseTime/deformable-detr,deformable_detr,skip,Load problem
|
SenseTime/deformable-detr,deformable_detr,xfail,Tracing error: Please check correctness of provided example_input (but eval was correct)
|
||||||
shahules786/Reward-model-gptneox-410M,rm_gptneox_config,skip,Load problem
|
shahules786/Reward-model-gptneox-410M,rm_gptneox_config,skip,Load problem
|
||||||
shauray/Llava-Llama-2-7B-hf,llavallama,skip,Load problem
|
shauray/Llava-Llama-2-7B-hf,llavallama,skip,Load problem
|
||||||
shauray/ViTPose,vitpose,skip,Load problem
|
shauray/ViTPose,vitpose,skip,Load problem
|
||||||
@ -335,7 +335,7 @@ shikhartuli/flexibert-mini,flexibert,skip,Load problem
|
|||||||
shikras/shikra-7b-delta-v1-0708,shikra,skip,Load problem
|
shikras/shikra-7b-delta-v1-0708,shikra,skip,Load problem
|
||||||
shi-labs/dinat-mini-in1k-224,dinat,xfail,Accuracy validation failed
|
shi-labs/dinat-mini-in1k-224,dinat,xfail,Accuracy validation failed
|
||||||
shi-labs/nat-mini-in1k-224,nat,xfail,Accuracy validation failed
|
shi-labs/nat-mini-in1k-224,nat,xfail,Accuracy validation failed
|
||||||
shi-labs/oneformer_ade20k_swin_large,oneformer,skip,Load problem
|
shi-labs/oneformer_ade20k_swin_large,oneformer,xfail,Tracing error: Please check correctness of provided example_input (but eval was correct)
|
||||||
shuqi/seed-encoder,seed_encoder,skip,Load problem
|
shuqi/seed-encoder,seed_encoder,skip,Load problem
|
||||||
sijunhe/nezha-cn-base,nezha
|
sijunhe/nezha-cn-base,nezha
|
||||||
sjiang1/codecse,roberta_for_cl,skip,Load problem
|
sjiang1/codecse,roberta_for_cl,skip,Load problem
|
||||||
|
@ -125,6 +125,42 @@ class TestTransformersModel(TestTorchConvertModel):
|
|||||||
preprocessor = CLIPFeatureExtractor.from_pretrained(name)
|
preprocessor = CLIPFeatureExtractor.from_pretrained(name)
|
||||||
encoded_input = preprocessor(self.image, return_tensors='pt')
|
encoded_input = preprocessor(self.image, return_tensors='pt')
|
||||||
example = dict(encoded_input)
|
example = dict(encoded_input)
|
||||||
|
elif 'xclip' in mi.tags:
|
||||||
|
from transformers import XCLIPVisionModel
|
||||||
|
|
||||||
|
model = XCLIPVisionModel.from_pretrained(name, **model_kwargs)
|
||||||
|
# needs video as input
|
||||||
|
example = {'pixel_values': torch.randn(*(16, 3, 224, 224), dtype=torch.float32)}
|
||||||
|
elif 'audio-spectrogram-transformer' in mi.tags:
|
||||||
|
example = {'input_values': torch.randn(*(1, 1024, 128), dtype=torch.float32)}
|
||||||
|
elif 'mega' in mi.tags:
|
||||||
|
from transformers import AutoModel
|
||||||
|
|
||||||
|
model = AutoModel.from_pretrained(name, **model_kwargs)
|
||||||
|
model.config.output_attentions = True
|
||||||
|
model.config.output_hidden_states = True
|
||||||
|
model.config.return_dict = True
|
||||||
|
example = dict(model.dummy_inputs)
|
||||||
|
elif 'bros' in mi.tags:
|
||||||
|
from transformers import AutoProcessor, AutoModel
|
||||||
|
|
||||||
|
processor = AutoProcessor.from_pretrained(name)
|
||||||
|
model = AutoModel.from_pretrained(name, **model_kwargs)
|
||||||
|
encoding = processor("to the moon!", return_tensors="pt")
|
||||||
|
bbox = torch.randn([1, 6, 8], dtype=torch.float32)
|
||||||
|
example = dict(input_ids=encoding["input_ids"], bbox=bbox, attention_mask=encoding["attention_mask"])
|
||||||
|
elif 'upernet' in mi.tags:
|
||||||
|
from transformers import AutoProcessor, UperNetForSemanticSegmentation
|
||||||
|
|
||||||
|
processor = AutoProcessor.from_pretrained(name)
|
||||||
|
model = UperNetForSemanticSegmentation.from_pretrained(name, **model_kwargs)
|
||||||
|
example = dict(processor(images=self.image, return_tensors="pt"))
|
||||||
|
elif 'deformable_detr' in mi.tags or 'universal-image-segmentation' in mi.tags:
|
||||||
|
from transformers import AutoProcessor, AutoModel
|
||||||
|
|
||||||
|
processor = AutoProcessor.from_pretrained(name)
|
||||||
|
model = AutoModel.from_pretrained(name, **model_kwargs)
|
||||||
|
example = dict(processor(images=self.image, task_inputs=["semantic"], return_tensors="pt"))
|
||||||
elif "t5" in mi.tags:
|
elif "t5" in mi.tags:
|
||||||
from transformers import T5Tokenizer
|
from transformers import T5Tokenizer
|
||||||
tokenizer = T5Tokenizer.from_pretrained(name)
|
tokenizer = T5Tokenizer.from_pretrained(name)
|
||||||
|
Loading…
Reference in New Issue
Block a user