Added new version of BatchNormInference (#2728)

* Added new version of BatchNormInference

* Fixed code style

* Fixed batch norm inference v5

* Added opset4 and opset5 to IE backend

* Fixed functional test

* Fixed cpuFunc tests

* Fixed transformation order

* Try to fix validation

* Revert some changes

* Updated python API and added tests

* Fixed code style

* Fixed python code style

* Disabled test
This commit is contained in:
Ilya Churaev 2020-10-22 13:21:23 +03:00 committed by GitHub
parent 4519097e47
commit 1594489a2f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 767 additions and 75 deletions

View File

@ -113,7 +113,7 @@
<tab type="user" title="Atan-1" url="@ref openvino_docs_ops_arithmetic_Atan_1"/> <tab type="user" title="Atan-1" url="@ref openvino_docs_ops_arithmetic_Atan_1"/>
<tab type="user" title="Atanh-3" url="@ref openvino_docs_ops_arithmetic_Atanh_3"/> <tab type="user" title="Atanh-3" url="@ref openvino_docs_ops_arithmetic_Atanh_3"/>
<tab type="user" title="AvgPool-1" url="@ref openvino_docs_ops_pooling_AvgPool_1"/> <tab type="user" title="AvgPool-1" url="@ref openvino_docs_ops_pooling_AvgPool_1"/>
<tab type="user" title="BatchNormInference-1" url="@ref openvino_docs_ops_normalization_BatchNormInference_1"/> <tab type="user" title="BatchNormInference-5" url="@ref openvino_docs_ops_normalization_BatchNormInference_5"/>
<tab type="user" title="BatchToSpace-2" url="@ref openvino_docs_ops_movement_BatchToSpace_2"/> <tab type="user" title="BatchToSpace-2" url="@ref openvino_docs_ops_movement_BatchToSpace_2"/>
<tab type="user" title="BinaryConvolution-1" url="@ref openvino_docs_ops_convolution_BinaryConvolution_1"/> <tab type="user" title="BinaryConvolution-1" url="@ref openvino_docs_ops_convolution_BinaryConvolution_1"/>
<tab type="user" title="Broadcast-1" url="@ref openvino_docs_ops_movement_Broadcast_1"/> <tab type="user" title="Broadcast-1" url="@ref openvino_docs_ops_movement_Broadcast_1"/>

View File

@ -0,0 +1,98 @@
## BatchNormInference <a name="BatchNormInference"></a> {#openvino_docs_ops_normalization_BatchNormInference_5}
**Versioned name**: *BatchNormInference-5
**Category**: *Normalization*
**Short description**: *BatchNormInference* layer normalizes a `input` tensor by `mean` and `variance`, and applies a scale (`gamma`) to it, as well as an offset (`beta`).
**Attributes**:
* *epsilon*
* **Description**: *epsilon* is the number to be added to the variance to avoid division by zero when normalizing a value. For example, *epsilon* equal to 0.001 means that 0.001 is added to the variance.
* **Range of values**: a positive floating-point number
* **Type**: `float`
* **Default value**: None
* **Required**: *yes*
**Inputs**
* **1**: `input` - input tensor with data for normalization. At least a 2D tensor of type T, the second dimension represents the channel axis and must have a span of at least 1. **Required.**
* **2**: `gamma` - gamma scaling for normalized value. A 1D tensor of type T with the same span as input's channel axis. **Required.**
* **3**: `beta` - bias added to the scaled normalized value. A 1D tensor of type T with the same span as input's channel axis.. **Required.**
* **4**: `mean` - value for mean normalization. A 1D tensor of type T with the same span as input's channel axis.. **Required.**
* **5**: `variance` - value for variance normalization. A 1D tensor of type T with the same span as input's channel axis.. **Required.**
**Outputs**
* **1**: The result of normalization. A tensor of the same type and shape with 1st input tensor.
**Types**
* *T*: any numeric type.
**Mathematical Formulation**
*BatchNormInference* normalizes the output in each hidden layer.
* **Input**: Values of \f$x\f$ over a mini-batch:
\f[
\beta = \{ x_{1...m} \}
\f]
* **Parameters to learn**: \f$ \gamma, \beta\f$
* **Output**:
\f[
\{ o_{i} = BN_{\gamma, \beta} ( b_{i} ) \}
\f]
* **Mini-batch mean**:
\f[
\mu_{\beta} \leftarrow \frac{1}{m}\sum_{i=1}^{m}b_{i}
\f]
* **Mini-batch variance**:
\f[
\sigma_{\beta }^{2}\leftarrow \frac{1}{m}\sum_{i=1}^{m} ( b_{i} - \mu_{\beta} )^{2}
\f]
* **Normalize**:
\f[
\hat{b_{i}} \leftarrow \frac{b_{i} - \mu_{\beta}}{\sqrt{\sigma_{\beta }^{2} + \epsilon }}
\f]
* **Scale and shift**:
\f[
o_{i} \leftarrow \gamma\hat{b_{i}} + \beta = BN_{\gamma ,\beta } ( b_{i} )
\f]
**Example**
```xml
<layer ... type="BatchNormInference" ...>
<data epsilon="9.99e-06" />
<input>
<port id="0"> <!-- input -->
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
<port id="1"> <!-- gamma -->
<dim>3</dim>
</port>
<port id="2"> <!-- beta -->
<dim>3</dim>
</port>
<port id="3"> <!-- mean -->
<dim>3</dim>
</port>
<port id="4"> <!-- variance -->
<dim>3</dim>
</port>
</input>
<output>
<port id="5">
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</output>
</layer>
```

View File

@ -19,7 +19,7 @@ declared in `namespace opset5`.
* [Atan](arithmetic/Atan_1.md) * [Atan](arithmetic/Atan_1.md)
* [Atanh](arithmetic/Atanh_3.md) * [Atanh](arithmetic/Atanh_3.md)
* [AvgPool](pooling/AvgPool_1.md) * [AvgPool](pooling/AvgPool_1.md)
* [BatchNormInference](normalization/BatchNormInference_1.md) * [BatchNormInference](normalization/BatchNormInference_5.md)
* [BatchToSpace](movement/BatchToSpace_2.md) * [BatchToSpace](movement/BatchToSpace_2.md)
* [BinaryConvolution](convolution/BinaryConvolution_1.md) * [BinaryConvolution](convolution/BinaryConvolution_1.md)
* [Broadcast](movement/Broadcast_3.md) * [Broadcast](movement/Broadcast_3.md)

View File

@ -732,7 +732,6 @@ void convertFunctionToICNNNetwork(const std::shared_ptr<const ::ngraph::Function
std::make_shared<Builder::NodeConverter<::ngraph::op::Asin>>(), std::make_shared<Builder::NodeConverter<::ngraph::op::Asin>>(),
std::make_shared<Builder::NodeConverter<::ngraph::op::Atan>>(), std::make_shared<Builder::NodeConverter<::ngraph::op::Atan>>(),
std::make_shared<Builder::NodeConverter<::ngraph::op::v1::AvgPool>>(), std::make_shared<Builder::NodeConverter<::ngraph::op::v1::AvgPool>>(),
std::make_shared<Builder::NodeConverter<::ngraph::op::BatchNormInference>>(),
std::make_shared<Builder::NodeConverter<::ngraph::op::Clamp>>(), std::make_shared<Builder::NodeConverter<::ngraph::op::Clamp>>(),
std::make_shared<Builder::NodeConverter<::ngraph::op::Concat>>(), std::make_shared<Builder::NodeConverter<::ngraph::op::Concat>>(),
std::make_shared<Builder::NodeConverter<::ngraph::op::Constant>>(), std::make_shared<Builder::NodeConverter<::ngraph::op::Constant>>(),

View File

@ -667,12 +667,6 @@ CNNLayer::Ptr NodeConverter<ngraph::op::v1::Add>::createLayer(const std::shared_
return res; return res;
} }
template <>
CNNLayer::Ptr NodeConverter<ngraph::op::BatchNormInference>::createLayer(
const std::shared_ptr<ngraph::Node>& layer) const {
THROW_IE_EXCEPTION << "BatchNormInference operation should be fused or decomposed";
}
template <> template <>
CNNLayer::Ptr NodeConverter<ngraph::op::Squeeze>::createLayer(const std::shared_ptr<ngraph::Node>& layer) const { CNNLayer::Ptr NodeConverter<ngraph::op::Squeeze>::createLayer(const std::shared_ptr<ngraph::Node>& layer) const {
LayerParams params = {layer->get_friendly_name(), "Squeeze", LayerParams params = {layer->get_friendly_name(), "Squeeze",

View File

@ -394,7 +394,6 @@ std::shared_ptr<ngraph::Node> V10Parser::createNode(const std::vector<ngraph::Ou
std::make_shared<LayerCreator<ngraph::op::Asin>>("Asin"), std::make_shared<LayerCreator<ngraph::op::Asin>>("Asin"),
std::make_shared<LayerCreator<ngraph::op::Atan>>("Atan"), std::make_shared<LayerCreator<ngraph::op::Atan>>("Atan"),
std::make_shared<LayerCreator<ngraph::op::v1::AvgPool>>("AvgPool"), std::make_shared<LayerCreator<ngraph::op::v1::AvgPool>>("AvgPool"),
std::make_shared<LayerCreator<ngraph::op::BatchNormInference>>("BatchNormInference"),
std::make_shared<LayerCreator<ngraph::op::Ceiling>>("Ceiling"), std::make_shared<LayerCreator<ngraph::op::Ceiling>>("Ceiling"),
std::make_shared<LayerCreator<ngraph::op::Clamp>>("Clamp"), std::make_shared<LayerCreator<ngraph::op::Clamp>>("Clamp"),
std::make_shared<LayerCreator<ngraph::op::Concat>>("Concat"), std::make_shared<LayerCreator<ngraph::op::Concat>>("Concat"),
@ -951,20 +950,6 @@ std::shared_ptr<ngraph::Node> V10Parser::LayerCreator<ngraph::op::v0::LSTMCell>:
activations, activations_alpha, activations_beta, clip); activations, activations_alpha, activations_beta, clip);
} }
// BatchNormInference layer
template <>
std::shared_ptr<ngraph::Node> V10Parser::LayerCreator<ngraph::op::BatchNormInference>::createLayer(
const ngraph::OutputVector& inputs, const pugi::xml_node& node, std::istream& binStream,
const GenericLayerParams& layerParsePrms) {
checkParameters(inputs, layerParsePrms, 5);
pugi::xml_node dn = node.child("data");
if (dn.empty())
THROW_IE_EXCEPTION << "Cannot read parameter for " << getType() << " layer with name: " << layerParsePrms.name;
float eps = GetFloatAttr(dn, "eps");
return std::make_shared<ngraph::op::BatchNormInference>(inputs[0], inputs[1], inputs[2], inputs[3], inputs[4], eps);
}
// CTCGreedyDecoder layer // CTCGreedyDecoder layer
template <> template <>
std::shared_ptr<ngraph::Node> V10Parser::LayerCreator<ngraph::op::CTCGreedyDecoder>::createLayer( std::shared_ptr<ngraph::Node> V10Parser::LayerCreator<ngraph::op::CTCGreedyDecoder>::createLayer(

View File

@ -11,6 +11,7 @@
#include <ngraph/ngraph.hpp> #include <ngraph/ngraph.hpp>
#include <ngraph/pass/graph_rewrite.hpp> #include <ngraph/pass/graph_rewrite.hpp>
#include <ngraph/opsets/opset5.hpp>
using namespace std; using namespace std;
@ -18,6 +19,7 @@ namespace ngraph {
namespace pass { namespace pass {
class TRANSFORMATIONS_API BatchNormDecomposition; class TRANSFORMATIONS_API BatchNormDecomposition;
class TRANSFORMATIONS_API BatchNormV5Decomposition;
} // namespace pass } // namespace pass
} // namespace ngraph } // namespace ngraph
@ -27,3 +29,9 @@ public:
NGRAPH_RTTI_DECLARATION; NGRAPH_RTTI_DECLARATION;
BatchNormDecomposition(); BatchNormDecomposition();
}; };
class ngraph::pass::BatchNormV5Decomposition: public ngraph::pass::MatcherPass {
public:
NGRAPH_RTTI_DECLARATION;
BatchNormV5Decomposition();
};

View File

@ -93,6 +93,7 @@ bool ngraph::pass::CommonOptimizations::run_on_function(std::shared_ptr<ngraph::
decomp->add_matcher<ngraph::pass::ConvertDepthToSpace>(); decomp->add_matcher<ngraph::pass::ConvertDepthToSpace>();
decomp->add_matcher<ngraph::pass::ConvertSpaceToDepth>(); decomp->add_matcher<ngraph::pass::ConvertSpaceToDepth>();
decomp->add_matcher<ngraph::pass::BatchNormDecomposition>(); decomp->add_matcher<ngraph::pass::BatchNormDecomposition>();
decomp->add_matcher<ngraph::pass::BatchNormV5Decomposition>();
decomp->set_name("ngraph::pass::CommonDecompositions"); decomp->set_name("ngraph::pass::CommonDecompositions");
// CF is required after all decompositions // CF is required after all decompositions

View File

@ -8,8 +8,11 @@
#include <vector> #include <vector>
#include <ngraph/opsets/opset1.hpp> #include <ngraph/opsets/opset1.hpp>
#include <ngraph/opsets/opset5.hpp>
#include <ngraph/rt_info.hpp> #include <ngraph/rt_info.hpp>
using namespace ngraph;
NGRAPH_RTTI_DEFINITION(ngraph::pass::BatchNormDecomposition, "BatchNormDecomposition", 0); NGRAPH_RTTI_DEFINITION(ngraph::pass::BatchNormDecomposition, "BatchNormDecomposition", 0);
ngraph::pass::BatchNormDecomposition::BatchNormDecomposition() { ngraph::pass::BatchNormDecomposition::BatchNormDecomposition() {
@ -43,39 +46,107 @@ ngraph::pass::BatchNormDecomposition::BatchNormDecomposition() {
const auto& input_type = m_input->get_element_type(); const auto& input_type = m_input->get_element_type();
// scale_add = variance + eps // scale_add = variance + eps
auto scale_add = make_shared<opset1::Add>(m_var, opset1::Constant::create(input_type, Shape{}, {m_bn->get_eps_value()})); auto scale_add = make_shared<opset5::Add>(m_var, opset5::Constant::create(input_type, Shape{}, {m_bn->get_eps_value()}));
// scale = sqrt(variance + eps) // scale = sqrt(variance + eps)
auto scale = make_shared<opset1::Sqrt>(scale_add); auto scale = make_shared<opset5::Sqrt>(scale_add);
// Divide `gamma` by `sqrt(variance + eps)` // Divide `gamma` by `sqrt(variance + eps)`
auto gamma_div_scale = std::make_shared<opset1::Divide>(m_gamma, scale); auto gamma_div_scale = std::make_shared<opset5::Divide>(m_gamma, scale);
size_t dims_to_add = m_input->get_shape().size() - 2; size_t dims_to_add = m_input->get_shape().size() - 2;
Shape input_aligned_shape = m_gamma->get_shape(); Shape input_aligned_shape = m_gamma->get_shape();
for (size_t i = 0; i < dims_to_add; ++i) for (size_t i = 0; i < dims_to_add; ++i)
input_aligned_shape.push_back(1); input_aligned_shape.push_back(1);
auto new_shape = opset1::Constant::create(element::i64, Shape{input_aligned_shape.size()}, input_aligned_shape); auto new_shape = opset5::Constant::create(element::i64, Shape{input_aligned_shape.size()}, input_aligned_shape);
auto gamma_div_scale_aligned = make_shared<opset1::Reshape>(gamma_div_scale, new_shape, true); auto gamma_div_scale_aligned = make_shared<opset5::Reshape>(gamma_div_scale, new_shape, true);
auto beta_aligned = make_shared<opset1::Reshape>(m_beta, new_shape, true); auto beta_aligned = make_shared<opset5::Reshape>(m_beta, new_shape, true);
auto mean_aligned = make_shared<opset1::Reshape>(m_mean, new_shape, true); auto mean_aligned = make_shared<opset5::Reshape>(m_mean, new_shape, true);
// input_sub_mean = input - mean // input_sub_mean = input - mean
auto input_sub_mean = register_new_node<opset1::Subtract>(m_input, mean_aligned); auto input_sub_mean = register_new_node<opset5::Subtract>(m_input, mean_aligned);
// Multiply `input - mean` and `gamma / sqrt(variance + eps)` // Multiply `input - mean` and `gamma / sqrt(variance + eps)`
auto mul = std::make_shared<opset1::Multiply>(input_sub_mean, gamma_div_scale_aligned); auto mul = std::make_shared<opset5::Multiply>(input_sub_mean, gamma_div_scale_aligned);
// Add `(input - mean) * gamma / sqrt(variance + eps)` and `beta` // Add `(input - mean) * gamma / sqrt(variance + eps)` and `beta`
auto add = std::make_shared<opset1::Add>(mul, beta_aligned); auto add = std::make_shared<opset5::Add>(mul, beta_aligned);
add->set_friendly_name(m_bn->get_friendly_name()); add->set_friendly_name(m_bn->get_friendly_name());
copy_runtime_info(m_bn, {scale_add, scale, gamma_div_scale, gamma_div_scale_aligned, copy_runtime_info(m_bn, {scale_add, scale, gamma_div_scale, gamma_div_scale_aligned,
beta_aligned, input_sub_mean, mul, add}); beta_aligned, input_sub_mean, mul, add});
replace_node(m_bn, add);
return true;
};
auto m = std::make_shared<ngraph::pattern::Matcher>(bn, "BatchNormDecomposition");
this->register_matcher(m, callback);
}
NGRAPH_RTTI_DEFINITION(ngraph::pass::BatchNormV5Decomposition, "BatchNormDecomposition", 5);
ngraph::pass::BatchNormV5Decomposition::BatchNormV5Decomposition() {
Shape shape{2, 2, 1, 1};
auto input = make_shared<pattern::op::Label>(element::f32, shape);
auto mean_shape = Shape{2};
auto mean = make_shared<pattern::op::Label>(element::f32, mean_shape);
auto var_shape = Shape{2};
auto var = make_shared<pattern::op::Label>(element::f32, var_shape);
auto gamma_shape = Shape{2};
auto gamma = make_shared<pattern::op::Label>(element::f32, gamma_shape);
auto beta_shape = Shape{2};
auto beta = make_shared<pattern::op::Label>(element::f32, beta_shape);
auto bn = make_shared<opset5::BatchNormInference>(input, gamma, beta, mean, var, 0.001);
ngraph::graph_rewrite_callback callback = [this, input, gamma, beta, mean, var](ngraph::pattern::Matcher &m) {
auto pattern_map = m.get_pattern_map();
auto m_input = pattern_map[input];
auto m_gamma = pattern_map[gamma];
auto m_beta = pattern_map[beta];
auto m_mean = pattern_map[mean];
auto m_var = pattern_map[var];
// TODO: check that all input shapes are static
auto m_bn = dynamic_pointer_cast<opset5::BatchNormInference>(m.get_match_root());
if (!m_bn) {
return false;
}
const auto& input_type = m_input->get_element_type();
// scale_add = variance + eps
auto scale_add = make_shared<opset5::Add>(m_var, opset5::Constant::create(input_type, Shape{}, {m_bn->get_eps_value()}));
// scale = sqrt(variance + eps)
auto scale = make_shared<opset5::Sqrt>(scale_add);
// Divide `gamma` by `sqrt(variance + eps)`
auto gamma_div_scale = std::make_shared<opset5::Divide>(m_gamma, scale);
size_t dims_to_add = m_input->get_shape().size() - 2;
Shape input_aligned_shape = m_gamma->get_shape();
for (size_t i = 0; i < dims_to_add; ++i)
input_aligned_shape.push_back(1);
auto new_shape = opset5::Constant::create(element::i64, Shape{input_aligned_shape.size()}, input_aligned_shape);
auto gamma_div_scale_aligned = make_shared<opset5::Reshape>(gamma_div_scale, new_shape, true);
auto beta_aligned = make_shared<opset5::Reshape>(m_beta, new_shape, true);
auto mean_aligned = make_shared<opset5::Reshape>(m_mean, new_shape, true);
// input_sub_mean = input - mean
auto input_sub_mean = register_new_node<opset5::Subtract>(m_input, mean_aligned);
// Multiply `input - mean` and `gamma / sqrt(variance + eps)`
auto mul = std::make_shared<opset5::Multiply>(input_sub_mean, gamma_div_scale_aligned);
// Add `(input - mean) * gamma / sqrt(variance + eps)` and `beta`
auto add = std::make_shared<opset5::Add>(mul, beta_aligned);
add->set_friendly_name(m_bn->get_friendly_name());
copy_runtime_info(m_bn, {scale_add, scale, gamma_div_scale, gamma_div_scale_aligned,
beta_aligned, input_sub_mean, mul, add});
replace_node(m_bn, add); replace_node(m_bn, add);
return true; return true;
}; };
auto m = std::make_shared<ngraph::pattern::Matcher>(bn, "BatchNormDecomposition"); auto m = std::make_shared<ngraph::pattern::Matcher>(bn, "BatchNormDecomposition");
this->register_matcher(m, callback); this->register_matcher(m, callback);
} }

View File

@ -87,8 +87,8 @@ TEST_F(NGraphReaderTests, ReadBatchNormInferenceNetwork) {
</port> </port>
</output> </output>
</layer> </layer>
<layer name="bn" id="5" type="BatchNormInference" version="opset1"> <layer name="bn" id="5" type="BatchNormInference" version="opset5">
<data eps="0.1" /> <data epsilon="0.1" />
<input> <input>
<port id="1" precision="FP32"> <port id="1" precision="FP32">
<dim>1</dim> <dim>1</dim>

View File

@ -24,7 +24,7 @@ std::shared_ptr<ngraph::Node> makeBatchNormInference(const ngraph::Output<Node>&
std::uniform_real_distribution<float> dis(0.0, 10.0); std::uniform_real_distribution<float> dis(0.0, 10.0);
std::generate(values.begin(), values.end(), [&dis, &gen]() { return dis(gen); }); std::generate(values.begin(), values.end(), [&dis, &gen]() { return dis(gen); });
auto variance = ngraph::builder::makeConstant(ngPrc, ngraph::Shape{C}, values, !random); auto variance = ngraph::builder::makeConstant(ngPrc, ngraph::Shape{C}, values, !random);
return std::make_shared<ngraph::opset4::BatchNormInference>(data, gamma, beta, mean, variance, epsilon); return std::make_shared<ngraph::opset5::BatchNormInference>(data, gamma, beta, mean, variance, epsilon);
} }
} // namespace builder } // namespace builder
} // namespace ngraph } // namespace ngraph

View File

@ -31,8 +31,7 @@ namespace ngraph
class NGRAPH_API BatchNormInference : public Op class NGRAPH_API BatchNormInference : public Op
{ {
public: public:
static constexpr NodeTypeInfo type_info{"BatchNormInference", 0}; NGRAPH_RTTI_DECLARATION;
const NodeTypeInfo& get_type_info() const override { return type_info; }
BatchNormInference() = default; BatchNormInference() = default;
/// \param input [., C, ...] /// \param input [., C, ...]
/// \param gamma gamma scaling for normalized value. [C] /// \param gamma gamma scaling for normalized value. [C]
@ -66,6 +65,44 @@ namespace ngraph
double m_epsilon; double m_epsilon;
}; };
} // namespace v0 } // namespace v0
using v0::BatchNormInference; namespace v5
{
class NGRAPH_API BatchNormInference : public Op
{
public:
NGRAPH_RTTI_DECLARATION;
BatchNormInference() = default;
/// \param input [., C, ...]
/// \param gamma gamma scaling for normalized value. [C]
/// \param beta bias added to the scaled normalized value [C]
/// \param mean value for mean normalization [C]
/// \param variance value for variance normalization [C]
/// \param epsilon Avoids divsion by 0 if input has 0 variance
BatchNormInference(const Output<Node>& input,
const Output<Node>& gamma,
const Output<Node>& beta,
const Output<Node>& mean,
const Output<Node>& variance,
double epsilon);
bool visit_attributes(AttributeVisitor& visitor) override;
void validate_and_infer_types() override;
double get_eps_value() const { return m_epsilon; }
void set_eps_value(double epsilon) { m_epsilon = epsilon; }
std::shared_ptr<Node>
clone_with_new_inputs(const OutputVector& new_args) const override;
private:
static constexpr size_t INPUT_DATA = 0;
static constexpr size_t INPUT_GAMMA = 1;
static constexpr size_t INPUT_BETA = 2;
static constexpr size_t INPUT_MEAN = 3;
static constexpr size_t INPUT_VARIANCE = 4;
double m_epsilon;
};
} // namespace v0
} }
} }

View File

@ -25,7 +25,7 @@ NGRAPH_OP(Add, ngraph::op::v1)
NGRAPH_OP(Asin, ngraph::op::v0) NGRAPH_OP(Asin, ngraph::op::v0)
NGRAPH_OP(Atan, ngraph::op::v0) NGRAPH_OP(Atan, ngraph::op::v0)
NGRAPH_OP(AvgPool, ngraph::op::v1) NGRAPH_OP(AvgPool, ngraph::op::v1)
NGRAPH_OP(BatchNormInference, ngraph::op::v0) NGRAPH_OP(BatchNormInference, ngraph::op::v5)
NGRAPH_OP(BinaryConvolution, ngraph::op::v1) NGRAPH_OP(BinaryConvolution, ngraph::op::v1)
NGRAPH_OP(Broadcast, ngraph::op::v3) NGRAPH_OP(Broadcast, ngraph::op::v3)
NGRAPH_OP(Bucketize, ngraph::op::v3) NGRAPH_OP(Bucketize, ngraph::op::v3)

View File

@ -23,27 +23,27 @@
using namespace std; using namespace std;
using namespace ngraph; using namespace ngraph;
constexpr NodeTypeInfo op::BatchNormInference::type_info; NGRAPH_RTTI_DEFINITION(op::v0::BatchNormInference, "batchNormInference", 0);
op::BatchNormInference::BatchNormInference(const Output<Node>& input, op::v0::BatchNormInference::BatchNormInference(const Output<Node>& input,
const Output<Node>& gamma, const Output<Node>& gamma,
const Output<Node>& beta, const Output<Node>& beta,
const Output<Node>& mean, const Output<Node>& mean,
const Output<Node>& variance, const Output<Node>& variance,
double epsilon) double epsilon)
: Op({gamma, beta, input, mean, variance}) : Op({gamma, beta, input, mean, variance})
, m_epsilon(epsilon) , m_epsilon(epsilon)
{ {
constructor_validate_and_infer_types(); constructor_validate_and_infer_types();
} }
bool op::BatchNormInference::visit_attributes(AttributeVisitor& visitor) bool op::v0::BatchNormInference::visit_attributes(AttributeVisitor& visitor)
{ {
visitor.on_attribute("epsilon", m_epsilon); visitor.on_attribute("epsilon", m_epsilon);
return true; return true;
} }
void op::BatchNormInference::validate_and_infer_types() void op::v0::BatchNormInference::validate_and_infer_types()
{ {
element::Type result_et; element::Type result_et;
PartialShape result_batch_shape; PartialShape result_batch_shape;
@ -67,9 +67,60 @@ void op::BatchNormInference::validate_and_infer_types()
} }
std::shared_ptr<Node> std::shared_ptr<Node>
op::BatchNormInference::clone_with_new_inputs(const OutputVector& new_args) const op::v0::BatchNormInference::clone_with_new_inputs(const OutputVector& new_args) const
{ {
check_new_args_count(this, new_args); check_new_args_count(this, new_args);
return std::make_shared<BatchNormInference>( return std::make_shared<BatchNormInference>(
new_args.at(2), new_args.at(0), new_args.at(1), new_args.at(3), new_args.at(4), m_epsilon); new_args.at(2), new_args.at(0), new_args.at(1), new_args.at(3), new_args.at(4), m_epsilon);
} }
NGRAPH_RTTI_DEFINITION(op::v5::BatchNormInference, "BatchNormInference", 5);
op::v5::BatchNormInference::BatchNormInference(const Output<Node>& input,
const Output<Node>& gamma,
const Output<Node>& beta,
const Output<Node>& mean,
const Output<Node>& variance,
double epsilon)
: Op({input, gamma, beta, mean, variance})
, m_epsilon(epsilon)
{
constructor_validate_and_infer_types();
}
bool op::v5::BatchNormInference::visit_attributes(AttributeVisitor& visitor)
{
visitor.on_attribute("epsilon", m_epsilon);
return true;
}
void op::v5::BatchNormInference::validate_and_infer_types()
{
element::Type result_et;
PartialShape result_batch_shape;
PartialShape result_channel_shape; // unused here
set_output_size(1);
std::tie(result_et, result_batch_shape, result_channel_shape) =
infer_batch_norm_forward(this,
get_input_element_type(INPUT_DATA),
get_input_element_type(INPUT_GAMMA),
get_input_element_type(INPUT_BETA),
get_input_element_type(INPUT_MEAN),
get_input_element_type(INPUT_VARIANCE),
get_input_partial_shape(INPUT_DATA),
get_input_partial_shape(INPUT_GAMMA),
get_input_partial_shape(INPUT_BETA),
get_input_partial_shape(INPUT_MEAN),
get_input_partial_shape(INPUT_VARIANCE));
set_output_type(0, result_et, result_batch_shape);
}
std::shared_ptr<Node>
op::v5::BatchNormInference::clone_with_new_inputs(const OutputVector& new_args) const
{
check_new_args_count(this, new_args);
return std::make_shared<BatchNormInference>(
new_args.at(0), new_args.at(1), new_args.at(2), new_args.at(3), new_args.at(4), m_epsilon);
}

View File

@ -26,7 +26,7 @@ from ngraph.opset3.ops import assign
from ngraph.opset1.ops import atan from ngraph.opset1.ops import atan
from ngraph.opset4.ops import atanh from ngraph.opset4.ops import atanh
from ngraph.opset1.ops import avg_pool from ngraph.opset1.ops import avg_pool
from ngraph.opset1.ops import batch_norm_inference from ngraph.opset5.ops import batch_norm_inference
from ngraph.opset2.ops import batch_to_space from ngraph.opset2.ops import batch_to_space
from ngraph.opset1.ops import binary_convolution from ngraph.opset1.ops import binary_convolution
from ngraph.opset3.ops import broadcast from ngraph.opset3.ops import broadcast

View File

@ -58,6 +58,32 @@ _get_node_factory_opset5 = partial(_get_node_factory, "opset5")
# -------------------------------------------- ops ------------------------------------------------ # -------------------------------------------- ops ------------------------------------------------
@nameable_op
def batch_norm_inference(
data: NodeInput,
gamma: NodeInput,
beta: NodeInput,
mean: NodeInput,
variance: NodeInput,
epsilon: float,
name: Optional[str] = None,
) -> Node:
"""Perform layer normalizes a input tensor by mean and variance with appling scale and offset.
:param data: The input tensor with data for normalization.
:param gamma: The scalar scaling for normalized value.
:param beta: The bias added to the scaled normalized value.
:param mean: The value for mean normalization.
:param variance: The value for variance normalization.
:param epsilon: The number to be added to the variance to avoid division
by zero when normalizing a value.
:param name: The optional name of the output node.
:return: The new node which performs BatchNormInference.
"""
inputs = as_nodes(data, gamma, beta, mean, variance)
return _get_node_factory_opset5().create("BatchNormInference", inputs, {"epsilon": epsilon})
@nameable_op @nameable_op
def gather_nd( def gather_nd(
data: NodeInput, data: NodeInput,

View File

@ -46,7 +46,8 @@ public:
auto Beta = make_shared<op::Parameter>(etype, channel_shape); auto Beta = make_shared<op::Parameter>(etype, channel_shape);
auto Mean = make_shared<op::Parameter>(etype, channel_shape); auto Mean = make_shared<op::Parameter>(etype, channel_shape);
auto Variance = make_shared<op::Parameter>(etype, channel_shape); auto Variance = make_shared<op::Parameter>(etype, channel_shape);
auto BN = make_shared<op::BatchNormInference>(Input, Gamma, Beta, Mean, Variance, epsilon); auto BN =
make_shared<op::v5::BatchNormInference>(Input, Gamma, Beta, Mean, Variance, epsilon);
m_function = make_shared<Function>(BN, ParameterVector{Input, Gamma, Beta, Mean, Variance}); m_function = make_shared<Function>(BN, ParameterVector{Input, Gamma, Beta, Mean, Variance});
m_input = backend->create_tensor(etype, input_shape); m_input = backend->create_tensor(etype, input_shape);
@ -285,7 +286,52 @@ NGRAPH_TEST(${BACKEND_NAME}, batch_norm_inference_parameters_duplication)
double eps = 0.001; double eps = 0.001;
auto shape_r = Shape{2, 2, 2, 1}; auto shape_r = Shape{2, 2, 2, 1};
auto bn = make_shared<op::BatchNormInference>(input, mvgb, mvgb, mvgb, mvgb, eps); auto bn = make_shared<op::v0::BatchNormInference>(input, mvgb, mvgb, mvgb, mvgb, eps);
auto f = make_shared<Function>(bn, ParameterVector{input, mvgb, mvgb, mvgb, mvgb});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto _input = backend->create_tensor(element::f32, input_shape);
copy_data(_input,
vector<float>{0.54881352f,
0.71518934f,
0.60276335f,
0.54488319f,
0.42365479f,
0.64589411f,
0.4375872f,
0.89177299f});
auto _mvgb = backend->create_tensor(element::f32, mvgb_shape);
copy_data(_mvgb, vector<float>{1.0f, 1.0f});
auto bn_output = backend->create_tensor(element::f32, shape_r);
vector<float> expected_result{0.54903894f,
0.71533161f,
0.60296183f,
0.54511058f,
0.42394274f,
0.64607101f,
0.43786817f,
0.89182704f};
auto handle = backend->compile(f);
handle->call_with_validate({bn_output}, {_input, _mvgb, _mvgb, _mvgb, _mvgb});
ASSERT_TRUE(
ngraph::test::all_close(expected_result, read_vector<float>(bn_output), 1e-3f, 1e-4f));
}
NGRAPH_TEST(${BACKEND_NAME}, batch_norm_inference_parameters_duplication_v5)
{
auto input_shape = Shape{2, 2, 2, 1};
auto input = make_shared<op::Parameter>(element::f32, input_shape);
auto mvgb_shape = Shape{2};
auto mvgb = make_shared<op::Parameter>(element::f32, mvgb_shape);
double eps = 0.001;
auto shape_r = Shape{2, 2, 2, 1};
auto bn = make_shared<op::v5::BatchNormInference>(input, mvgb, mvgb, mvgb, mvgb, eps);
auto f = make_shared<Function>(bn, ParameterVector{input, mvgb, mvgb, mvgb, mvgb}); auto f = make_shared<Function>(bn, ParameterVector{input, mvgb, mvgb, mvgb, mvgb});
auto backend = runtime::Backend::create("${BACKEND_NAME}"); auto backend = runtime::Backend::create("${BACKEND_NAME}");
@ -334,7 +380,56 @@ NGRAPH_TEST(${BACKEND_NAME}, batch_norm_fprop_inference_b2c2h2w1)
auto var = make_shared<op::Parameter>(element::f32, var_shape); auto var = make_shared<op::Parameter>(element::f32, var_shape);
double eps = 0.001; double eps = 0.001;
auto shape_r = Shape{2, 2, 2, 1}; auto shape_r = Shape{2, 2, 2, 1};
auto bn = make_shared<op::BatchNormInference>(input, gamma, beta, mean, var, eps); auto bn = make_shared<op::v0::BatchNormInference>(input, gamma, beta, mean, var, eps);
auto f = make_shared<Function>(bn, ParameterVector{input, gamma, beta, mean, var});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto _input = backend->create_tensor(element::f32, input_shape);
copy_data(_input,
vector<float>{0.54881352f,
0.71518934f,
0.60276335f,
0.54488319f,
0.42365479f,
0.64589411f,
0.4375872f,
0.89177299f});
auto _gamma = backend->create_tensor(element::f32, gamma_shape);
copy_data(_gamma, vector<float>{1.0f, 1.0f});
auto _beta = backend->create_tensor(element::f32, beta_shape);
copy_data(_beta, vector<float>{0.0f, 0.0f});
auto _mean = backend->create_tensor(element::f32, mean_shape);
copy_data(_mean, vector<float>{0.583388f, 0.619252f});
auto _var = backend->create_tensor(element::f32, var_shape);
copy_data(_var, vector<float>{0.0119972f, 0.0282681f});
auto bn_output = backend->create_tensor(element::f32, shape_r);
vector<float> expected_result{
-0.30327f, 1.1561f, -0.0963782f, -0.434702f, -1.4011f, 0.548275f, -1.06187f, 1.59295f};
auto handle = backend->compile(f);
handle->call_with_validate({bn_output}, {_input, _gamma, _beta, _mean, _var});
ASSERT_TRUE(
ngraph::test::all_close(expected_result, read_vector<float>(bn_output), 1e-3f, 1e-4f));
}
NGRAPH_TEST(${BACKEND_NAME}, batch_norm_fprop_inference_b2c2h2w1_v5)
{
auto input_shape = Shape{2, 2, 2, 1};
auto input = make_shared<op::Parameter>(element::f32, input_shape);
auto gamma_shape = Shape{2};
auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
auto beta_shape = Shape{2};
auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
auto mean_shape = Shape{2};
auto mean = make_shared<op::Parameter>(element::f32, mean_shape);
auto var_shape = Shape{2};
auto var = make_shared<op::Parameter>(element::f32, var_shape);
double eps = 0.001;
auto shape_r = Shape{2, 2, 2, 1};
auto bn = make_shared<op::v5::BatchNormInference>(input, gamma, beta, mean, var, eps);
auto f = make_shared<Function>(bn, ParameterVector{input, gamma, beta, mean, var}); auto f = make_shared<Function>(bn, ParameterVector{input, gamma, beta, mean, var});
auto backend = runtime::Backend::create("${BACKEND_NAME}"); auto backend = runtime::Backend::create("${BACKEND_NAME}");

View File

@ -85,7 +85,7 @@ namespace
void op_is_BatchNormInference() void op_is_BatchNormInference()
{ {
op::BatchNormInference node; op::v0::BatchNormInference node;
EXPECT_FALSE(op::is_unary_elementwise_arithmetic(&node)); EXPECT_FALSE(op::is_unary_elementwise_arithmetic(&node));
EXPECT_FALSE(op::is_binary_elementwise_arithmetic(&node)); EXPECT_FALSE(op::is_binary_elementwise_arithmetic(&node));
EXPECT_FALSE(op::is_binary_elementwise_comparison(&node)); EXPECT_FALSE(op::is_binary_elementwise_comparison(&node));

View File

@ -997,6 +997,7 @@ batch_norm_training_0eps_f64
# Function inputs number differ from number of given inputs # Function inputs number differ from number of given inputs
batch_norm_inference_parameters_duplication batch_norm_inference_parameters_duplication
batch_norm_inference_parameters_duplication_v5
backwards_abs backwards_abs
backwards_acos backwards_acos

View File

@ -250,8 +250,8 @@ protected:
} }
case OP_TYPEID::BatchNormInference: case OP_TYPEID::BatchNormInference:
{ {
const ngraph::op::BatchNormInference* bn = const ngraph::op::v0::BatchNormInference* bn =
static_cast<const ngraph::op::BatchNormInference*>(&node); static_cast<const ngraph::op::v0::BatchNormInference*>(&node);
reference::batch_norm_inference<T>(bn->get_eps_value(), reference::batch_norm_inference<T>(bn->get_eps_value(),
args[0]->get_data_ptr<const T>(), args[0]->get_data_ptr<const T>(),
args[1]->get_data_ptr<const T>(), args[1]->get_data_ptr<const T>(),
@ -262,6 +262,20 @@ protected:
node.get_input_shape(2)); node.get_input_shape(2));
break; break;
} }
case OP_TYPEID::BatchNormInference_v5:
{
const ngraph::op::v5::BatchNormInference* bn =
static_cast<const ngraph::op::v5::BatchNormInference*>(&node);
reference::batch_norm_inference<T>(bn->get_eps_value(),
args[1]->get_data_ptr<const T>(),
args[2]->get_data_ptr<const T>(),
args[0]->get_data_ptr<const T>(),
args[3]->get_data_ptr<const T>(),
args[4]->get_data_ptr<const T>(),
out[0]->get_data_ptr<T>(),
node.get_input_shape(0));
break;
}
case OP_TYPEID::BroadcastLike: break; case OP_TYPEID::BroadcastLike: break;
case OP_TYPEID::Ceiling: case OP_TYPEID::Ceiling:
{ {

View File

@ -57,6 +57,7 @@ NGRAPH_OP(GatherND, op::v5)
NGRAPH_OP(LSTMSequence, op::v5) NGRAPH_OP(LSTMSequence, op::v5)
NGRAPH_OP(GRUSequence, op::v5) NGRAPH_OP(GRUSequence, op::v5)
NGRAPH_OP(RNNSequence, op::v5) NGRAPH_OP(RNNSequence, op::v5)
NGRAPH_OP(BatchNormInference, op::v5)
NGRAPH_OP(Round, op::v5) NGRAPH_OP(Round, op::v5)
NGRAPH_OP(LogSoftmax, op::v5) NGRAPH_OP(LogSoftmax, op::v5)
#undef ID_SUFFIX #undef ID_SUFFIX

View File

@ -56,7 +56,7 @@ NGRAPH_OP(Add, ngraph::op)
NGRAPH_OP(Asin, ngraph::op) NGRAPH_OP(Asin, ngraph::op)
NGRAPH_OP(Atan, ngraph::op) NGRAPH_OP(Atan, ngraph::op)
NGRAPH_OP(AvgPool, ngraph::op::v0) NGRAPH_OP(AvgPool, ngraph::op::v0)
NGRAPH_OP(BatchNormInference, ngraph::op) NGRAPH_OP(BatchNormInference, ngraph::op::v0)
NGRAPH_OP(Broadcast, ngraph::op) NGRAPH_OP(Broadcast, ngraph::op)
NGRAPH_OP(BroadcastLike, ngraph::op) NGRAPH_OP(BroadcastLike, ngraph::op)
NGRAPH_OP(Ceiling, ngraph::op) NGRAPH_OP(Ceiling, ngraph::op)

View File

@ -41,7 +41,8 @@ TEST(type_prop, batch_norm_inference_partial_all_rank_dynamic)
auto mean = make_shared<op::Parameter>(mean_et, mean_shape); auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape); auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn = make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); auto bn =
make_shared<op::v0::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1); ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et); ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
@ -69,7 +70,8 @@ TEST(type_prop, batch_norm_inference_partial_input_rank_static_dynamic_ok)
auto mean = make_shared<op::Parameter>(mean_et, mean_shape); auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape); auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn = make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); auto bn =
make_shared<op::v0::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1); ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et); ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
@ -100,8 +102,8 @@ TEST(type_prop, batch_norm_inference_partial_input_rank_static_dynamic_zero_chan
try try
{ {
auto bn = auto bn = make_shared<op::v0::BatchNormInference>(
make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Zero channel count not detected"; FAIL() << "Zero channel count not detected";
} }
catch (const NodeValidationFailure& error) catch (const NodeValidationFailure& error)
@ -134,7 +136,8 @@ TEST(type_prop, batch_norm_inference_partial_input_rank_dynamic_some_rank_static
auto mean = make_shared<op::Parameter>(mean_et, mean_shape); auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape); auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn = make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); auto bn =
make_shared<op::v0::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1); ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et); ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
@ -163,8 +166,8 @@ TEST(type_prop, batch_norm_inference_partial_input_rank_dynamic_some_rank_static
try try
{ {
auto bn = auto bn = make_shared<op::v0::BatchNormInference>(
make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Wrong gamma/beta/mean/variance shape not detected"; FAIL() << "Wrong gamma/beta/mean/variance shape not detected";
} }
catch (const NodeValidationFailure& error) catch (const NodeValidationFailure& error)
@ -202,8 +205,8 @@ TEST(type_prop,
try try
{ {
auto bn = auto bn = make_shared<op::v0::BatchNormInference>(
make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Inconsistent gamma/beta/mean/variance shape not detected"; FAIL() << "Inconsistent gamma/beta/mean/variance shape not detected";
} }
catch (const NodeValidationFailure& error) catch (const NodeValidationFailure& error)
@ -240,8 +243,8 @@ TEST(type_prop,
try try
{ {
auto bn = auto bn = make_shared<op::v0::BatchNormInference>(
make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Inconsistent gamma/beta/mean/variance channel count not detected"; FAIL() << "Inconsistent gamma/beta/mean/variance channel count not detected";
} }
catch (const NodeValidationFailure& error) catch (const NodeValidationFailure& error)
@ -275,7 +278,8 @@ TEST(type_prop, batch_norm_inference_partial_input_rank_static_dynamic_some_stat
auto mean = make_shared<op::Parameter>(mean_et, mean_shape); auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape); auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn = make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); auto bn =
make_shared<op::v0::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1); ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et); ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
@ -306,8 +310,315 @@ TEST(type_prop,
try try
{ {
auto bn = auto bn = make_shared<op::v0::BatchNormInference>(
make_shared<op::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon); data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Inconsistent input/gamma/beta/mean/variance channel count not detected";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(),
std::string("Input channel dimension (4) does not match "
"shape for gamma/beta/mean/variance ({3})"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, batch_norm_inference_partial_all_rank_dynamic_v5)
{
PartialShape data_batch_shape{PartialShape::dynamic()};
PartialShape gamma_shape{PartialShape::dynamic()};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{PartialShape::dynamic()};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn =
make_shared<op::v5::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
ASSERT_TRUE(bn->get_output_partial_shape(0).rank().is_dynamic());
}
TEST(type_prop, batch_norm_inference_partial_input_rank_static_dynamic_ok_v5)
{
PartialShape data_batch_shape{
64, Dimension::dynamic(), Dimension::dynamic(), Dimension::dynamic()};
PartialShape gamma_shape{PartialShape::dynamic()};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{PartialShape::dynamic()};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn =
make_shared<op::v5::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
ASSERT_TRUE(bn->get_output_partial_shape(0).same_scheme(
PartialShape{64, Dimension::dynamic(), Dimension::dynamic(), Dimension::dynamic()}));
}
TEST(type_prop, batch_norm_inference_partial_input_rank_static_dynamic_zero_channels_v5)
{
PartialShape data_batch_shape{
Dimension::dynamic(), 0, Dimension::dynamic(), Dimension::dynamic()};
PartialShape gamma_shape{PartialShape::dynamic()};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{PartialShape::dynamic()};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
try
{
auto bn = make_shared<op::v5::BatchNormInference>(
data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Zero channel count not detected";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(), std::string("Channel count must be at least 1"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, batch_norm_inference_partial_input_rank_dynamic_some_rank_static_dynamic_ok_v5)
{
PartialShape data_batch_shape{PartialShape::dynamic()};
PartialShape gamma_shape{Dimension::dynamic()};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{Dimension::dynamic()};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn =
make_shared<op::v5::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
ASSERT_TRUE(bn->get_output_partial_shape(0).rank().is_dynamic());
}
TEST(type_prop,
batch_norm_inference_partial_input_rank_dynamic_some_rank_static_dynamic_wrong_rank_v5)
{
PartialShape data_batch_shape{PartialShape::dynamic()};
PartialShape gamma_shape{Dimension::dynamic(), Dimension::dynamic()};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{Dimension::dynamic(), Dimension::dynamic()};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
try
{
auto bn = make_shared<op::v5::BatchNormInference>(
data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Wrong gamma/beta/mean/variance shape not detected";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(
error.what(),
std::string("Shape for gamma/beta/mean/variance ({?,?}) does not have rank 1"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop,
batch_norm_inference_partial_input_rank_dynamic_some_rank_static_dynamic_inconsistent_rank_v5)
{
PartialShape data_batch_shape{PartialShape::dynamic()};
PartialShape gamma_shape{3, Dimension::dynamic()};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{Dimension::dynamic()};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
try
{
auto bn = make_shared<op::v5::BatchNormInference>(
data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Inconsistent gamma/beta/mean/variance shape not detected";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(),
std::string("Shapes for gamma/beta/mean/variance do not match"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop,
batch_norm_inference_partial_input_rank_dynamic_some_static_inconsistent_channel_count_v5)
{
PartialShape data_batch_shape{PartialShape::dynamic()};
PartialShape gamma_shape{3};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{4};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
try
{
auto bn = make_shared<op::v5::BatchNormInference>(
data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Inconsistent gamma/beta/mean/variance channel count not detected";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(),
std::string("Shapes for gamma/beta/mean/variance do not match"));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, batch_norm_inference_partial_input_rank_static_dynamic_some_static_ok_v5)
{
PartialShape data_batch_shape{64, Dimension::dynamic(), Dimension::dynamic(), 224};
PartialShape gamma_shape{3};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{3};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
auto bn =
make_shared<op::v5::BatchNormInference>(data_batch, gamma, beta, mean, variance, epsilon);
ASSERT_EQ(bn->get_output_size(), 1);
ASSERT_EQ(bn->get_output_element_type(0), data_batch_et);
ASSERT_TRUE(bn->get_output_partial_shape(0).same_scheme(
PartialShape{64, 3, Dimension::dynamic(), 224}));
}
TEST(
type_prop,
batch_norm_inference_partial_input_rank_static_dynamic_some_static_inconsistent_channel_count_v5)
{
PartialShape data_batch_shape{64, 4, Dimension::dynamic(), 224};
PartialShape gamma_shape{3};
PartialShape beta_shape{PartialShape::dynamic()};
PartialShape mean_shape{3};
PartialShape variance_shape{PartialShape::dynamic()};
double epsilon = 0.001;
element::Type data_batch_et = element::f32;
element::Type gamma_et = element::f32;
element::Type beta_et = element::f32;
element::Type mean_et = element::f32;
element::Type variance_et = element::f32;
auto data_batch = make_shared<op::Parameter>(data_batch_et, data_batch_shape);
auto gamma = make_shared<op::Parameter>(gamma_et, gamma_shape);
auto beta = make_shared<op::Parameter>(beta_et, beta_shape);
auto mean = make_shared<op::Parameter>(mean_et, mean_shape);
auto variance = make_shared<op::Parameter>(variance_et, variance_shape);
try
{
auto bn = make_shared<op::v5::BatchNormInference>(
data_batch, gamma, beta, mean, variance, epsilon);
FAIL() << "Inconsistent input/gamma/beta/mean/variance channel count not detected"; FAIL() << "Inconsistent input/gamma/beta/mean/variance channel count not detected";
} }
catch (const NodeValidationFailure& error) catch (const NodeValidationFailure& error)