math formula fix (#3512)
Co-authored-by: Nikolay Tyukaev <ntyukaev_lo@jenkins.inn.intel.com>
This commit is contained in:
parent
4a6e153d5a
commit
17df09967d
@ -1582,9 +1582,9 @@ OI, which means that Input changes the fastest, then Output.
|
|||||||
|
|
||||||
**Mathematical Formulation**
|
**Mathematical Formulation**
|
||||||
|
|
||||||
\f[
|
\f[
|
||||||
output[:, ... ,:, i, ... , j,:, ... ,:] = input2[:, ... ,:, input1[i, ... ,j],:, ... ,:]
|
output[:, ... ,:, i, ... , j,:, ... ,:] = input2[:, ... ,:, input1[i, ... ,j],:, ... ,:]
|
||||||
\f]
|
\f]
|
||||||
|
|
||||||
|
|
||||||
**Inputs**
|
**Inputs**
|
||||||
@ -5086,7 +5086,9 @@ t \in \left ( 0, \quad tiles \right )
|
|||||||
|
|
||||||
Output tensor is populated by values computes in the following way:
|
Output tensor is populated by values computes in the following way:
|
||||||
|
|
||||||
output[i1, ..., i(axis-1), j, i(axis+1) ..., iN] = top_k(input[i1, ...., i(axis-1), :, i(axis+1), ..., iN]), k, sort, mode)
|
\f[
|
||||||
|
output[i1, ..., i(axis-1), j, i(axis+1) ..., iN] = top_k(input[i1, ...., i(axis-1), :, i(axis+1), ..., iN]), k, sort, mode)
|
||||||
|
\f]
|
||||||
|
|
||||||
So for each slice `input[i1, ...., i(axis-1), :, i(axis+1), ..., iN]` which represents 1D array, top_k value is computed individually. Sorting and minimum/maximum are controlled by `sort` and `mode` attributes.
|
So for each slice `input[i1, ...., i(axis-1), :, i(axis+1), ..., iN]` which represents 1D array, top_k value is computed individually. Sorting and minimum/maximum are controlled by `sort` and `mode` attributes.
|
||||||
|
|
||||||
|
@ -26,9 +26,9 @@
|
|||||||
|
|
||||||
For each element from the input tensor calculates corresponding
|
For each element from the input tensor calculates corresponding
|
||||||
element in the output tensor with the following formula:
|
element in the output tensor with the following formula:
|
||||||
\f[
|
\f[
|
||||||
Mish(x) = x*tanh(ln(1.0+e^{x}))
|
Mish(x) = x*tanh(ln(1.0+e^{x}))
|
||||||
\f]
|
\f]
|
||||||
|
|
||||||
**Examples**
|
**Examples**
|
||||||
|
|
||||||
|
@ -14,9 +14,9 @@
|
|||||||
|
|
||||||
For each element from the input tensor calculates corresponding
|
For each element from the input tensor calculates corresponding
|
||||||
element in the output tensor with the following formula:
|
element in the output tensor with the following formula:
|
||||||
\f[
|
\f[
|
||||||
sigmoid( x ) = \frac{1}{1+e^{-x}}
|
sigmoid( x ) = \frac{1}{1+e^{-x}}
|
||||||
\f]
|
\f]
|
||||||
|
|
||||||
**Inputs**:
|
**Inputs**:
|
||||||
|
|
||||||
|
@ -9,9 +9,9 @@
|
|||||||
**Detailed description**: For each element from the input tensor calculates corresponding
|
**Detailed description**: For each element from the input tensor calculates corresponding
|
||||||
element in the output tensor with the following formula:
|
element in the output tensor with the following formula:
|
||||||
|
|
||||||
\f[
|
\f[
|
||||||
Swish(x) = x / (1.0 + e^{-(beta * x)})
|
Swish(x) = x / (1.0 + e^{-(beta * x)})
|
||||||
\f]
|
\f]
|
||||||
|
|
||||||
The Swish operation is introduced in the [article](https://arxiv.org/pdf/1710.05941.pdf).
|
The Swish operation is introduced in the [article](https://arxiv.org/pdf/1710.05941.pdf).
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user