Changed OV_SCOPE semantic (#3692)
* Added if DEFINE construction * Changed OV_SCOPE semantic * Fixed the code style * Fixed redundant lines
This commit is contained in:
parent
967c040e19
commit
1926179b65
@ -62,15 +62,16 @@ struct TestNode : public TestNodeBase {
|
|||||||
|
|
||||||
TEST(ConditionalCompilationTests, SimpleScope) {
|
TEST(ConditionalCompilationTests, SimpleScope) {
|
||||||
#define CCTests_Scope0 1
|
#define CCTests_Scope0 1
|
||||||
|
|
||||||
int n = 0;
|
int n = 0;
|
||||||
|
|
||||||
// Simple scope is enabled
|
// Simple scope is enabled
|
||||||
OV_SCOPE(CCTests, Scope0, n = 42;);
|
OV_SCOPE(CCTests, Scope0) {
|
||||||
|
n = 42;
|
||||||
|
}
|
||||||
EXPECT_EQ(n, 42);
|
EXPECT_EQ(n, 42);
|
||||||
|
|
||||||
// Simple scope is disabled
|
// Simple scope is disabled
|
||||||
OV_SCOPE(CCTests, Scope1, n = 0;);
|
OV_SCOPE(CCTests, Scope1) n = 43;
|
||||||
EXPECT_EQ(n, 42);
|
EXPECT_EQ(n, 42);
|
||||||
|
|
||||||
#undef CCTests_Scope0
|
#undef CCTests_Scope0
|
||||||
|
@ -63,10 +63,12 @@ struct TestNode : public TestNodeBase {
|
|||||||
TEST(ConditionalCompilationTests, SimpleScopeAnalysys) {
|
TEST(ConditionalCompilationTests, SimpleScopeAnalysys) {
|
||||||
int n = 0;
|
int n = 0;
|
||||||
|
|
||||||
OV_SCOPE(CCTests, Scope0, n = 42;);
|
OV_SCOPE(CCTests, Scope0) n = 42;
|
||||||
EXPECT_EQ(n, 42);
|
EXPECT_EQ(n, 42);
|
||||||
|
|
||||||
OV_SCOPE(CCTests, Scope1, n = 43;);
|
OV_SCOPE(CCTests, Scope1) {
|
||||||
|
n = 43;
|
||||||
|
}
|
||||||
EXPECT_EQ(n, 43);
|
EXPECT_EQ(n, 43);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -115,10 +115,6 @@ namespace ngraph
|
|||||||
const PartialShape input_partial_shape,
|
const PartialShape input_partial_shape,
|
||||||
const int64_t k) const;
|
const int64_t k) const;
|
||||||
void set_axis(const Rank input_rank, const int64_t axis);
|
void set_axis(const Rank input_rank, const int64_t axis);
|
||||||
|
|
||||||
private:
|
|
||||||
bool evaluate_topk(const HostTensorVector& outputs,
|
|
||||||
const HostTensorVector& inputs) const;
|
|
||||||
};
|
};
|
||||||
} // namespace v1
|
} // namespace v1
|
||||||
|
|
||||||
|
@ -40,26 +40,27 @@ namespace ngraph
|
|||||||
}
|
}
|
||||||
|
|
||||||
#if defined(SELECTIVE_BUILD) || defined(SELECTIVE_BUILD_ANALYZER)
|
#if defined(SELECTIVE_BUILD) || defined(SELECTIVE_BUILD_ANALYZER)
|
||||||
#define NGRAPH_OP_SCOPE(region, ...) OV_SCOPE(ngraph_op, region, __VA_ARGS__)
|
#define NGRAPH_OP_SCOPE(region) OV_SCOPE(ngraph_op, region)
|
||||||
#else
|
#else
|
||||||
#define NGRAPH_OP_SCOPE(region, ...) \
|
#define NGRAPH_OP_SCOPE(region) OV_ITT_SCOPED_TASK(itt::domains::ngraph_op, #region);
|
||||||
OV_ITT_SCOPED_TASK(itt::domains::ngraph_op, #region); \
|
|
||||||
__VA_ARGS__
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define NGRAPH_TYPE_CASE(region, a, ...) \
|
#define NGRAPH_TYPE_CASE(region, a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
OV_SCOPE( \
|
OV_SCOPE(ngraph_op, OV_CC_CAT3(region, _, a)) \
|
||||||
ngraph_op, OV_CC_CAT3(region, _, a), rc = evaluate<element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
rc = evaluate<element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break
|
||||||
|
|
||||||
#define NGRAPH_COPY_TENSOR(region, a, ...) \
|
#define NGRAPH_COPY_TENSOR(region, a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
OV_SCOPE(ngraph_op, \
|
OV_SCOPE(ngraph_op, OV_CC_CAT3(region, _, a)) \
|
||||||
OV_CC_CAT3(region, _, a), \
|
{ \
|
||||||
rc = copy_tensor<element::Type_t::a>(__VA_ARGS__)); \
|
rc = copy_tensor<element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break
|
||||||
|
@ -74,8 +74,9 @@ namespace absop
|
|||||||
bool op::Abs::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Abs::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Abs_evaluate)
|
||||||
v0_Abs_evaluate,
|
{
|
||||||
rc = absop::evaluate_abs(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
rc = absop::evaluate_abs(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -82,8 +82,9 @@ namespace acosop
|
|||||||
bool op::Acos::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Acos::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Acos_evaluate)
|
||||||
v0_Acos_evaluate,
|
{
|
||||||
rc = acosop::evaluate_acos(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
rc = acosop::evaluate_acos(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -71,6 +71,6 @@ namespace acoshop
|
|||||||
bool op::v3::Acosh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v3::Acosh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(v3_Acosh_evaluate, rc = acoshop::evaluate_acosh(inputs[0], outputs[0]));
|
NGRAPH_OP_SCOPE(v3_Acosh_evaluate) { rc = acoshop::evaluate_acosh(inputs[0], outputs[0]); }
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -94,7 +94,9 @@ shared_ptr<Node> op::v1::Add::clone_with_new_inputs(const OutputVector& new_args
|
|||||||
bool op::v1::Add::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Add::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(v1_Add_evaluate,
|
NGRAPH_OP_SCOPE(v1_Add_evaluate)
|
||||||
rc = add::evaluate_add(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
rc = add::evaluate_add(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -87,7 +87,9 @@ bool op::v1::LogicalAnd::evaluate(const HostTensorVector& outputs,
|
|||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(v1_LogicalAnd_evaluate,
|
NGRAPH_OP_SCOPE(v1_LogicalAnd_evaluate)
|
||||||
rc = logand::evaluate_logand(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
rc = logand::evaluate_logand(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -83,8 +83,9 @@ namespace asinop
|
|||||||
bool op::Asin::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Asin::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Asin_evaluate)
|
||||||
v0_Asin_evaluate,
|
{
|
||||||
rc = asinop::evaluate_asin(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
rc = asinop::evaluate_asin(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -71,6 +71,6 @@ namespace asinhop
|
|||||||
bool op::v3::Asinh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v3::Asinh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(v3_Asinh_evaluate, rc = asinhop::evaluate_asinh(inputs[0], outputs[0]));
|
NGRAPH_OP_SCOPE(v3_Asinh_evaluate) { rc = asinhop::evaluate_asinh(inputs[0], outputs[0]); }
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -82,8 +82,9 @@ namespace atanop
|
|||||||
bool op::Atan::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Atan::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Atan_evaluate)
|
||||||
v0_Atan_evaluate,
|
{
|
||||||
rc = atanop::evaluate_atan(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
rc = atanop::evaluate_atan(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -71,6 +71,6 @@ namespace atanhop
|
|||||||
bool op::v3::Atanh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v3::Atanh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
bool rc = false;
|
bool rc = false;
|
||||||
NGRAPH_OP_SCOPE(v3_Atanh_evaluate, rc = atanhop::evaluate_atanh(inputs[0], outputs[0]));
|
NGRAPH_OP_SCOPE(v3_Atanh_evaluate) { rc = atanhop::evaluate_atanh(inputs[0], outputs[0]); }
|
||||||
return rc;
|
return rc;
|
||||||
}
|
}
|
||||||
|
@ -259,6 +259,6 @@ namespace
|
|||||||
bool ngraph::op::v1::BatchToSpace::evaluate(const HostTensorVector& outputs,
|
bool ngraph::op::v1::BatchToSpace::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_BatchToSpace, return batch_to_space_evaluate(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_BatchToSpace) { return batch_to_space_evaluate(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -228,7 +228,7 @@ bool op::v3::Broadcast::visit_attributes(AttributeVisitor& visitor)
|
|||||||
bool op::v3::Broadcast::evaluate(const HostTensorVector& outputs,
|
bool op::v3::Broadcast::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v3_Broadcast_evaluate, return broadcast_evaluate(outputs, inputs));
|
NGRAPH_OP_SCOPE(v3_Broadcast_evaluate) { return broadcast_evaluate(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -318,7 +318,9 @@ bool op::v1::Broadcast::visit_attributes(AttributeVisitor& visitor)
|
|||||||
bool op::v1::Broadcast::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Broadcast::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Broadcast_evaluate,
|
NGRAPH_OP_SCOPE(v1_Broadcast_evaluate)
|
||||||
return op::util::BroadcastBase::evaluate(outputs, inputs));
|
{
|
||||||
|
return op::util::BroadcastBase::evaluate(outputs, inputs);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -83,8 +83,9 @@ namespace ceiling
|
|||||||
|
|
||||||
bool op::Ceiling::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Ceiling::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Ceiling_evaluate)
|
||||||
v0_Ceiling_evaluate,
|
{
|
||||||
return ceiling::evaluate_ceiling(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return ceiling::evaluate_ceiling(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -86,10 +86,11 @@ namespace clamp
|
|||||||
|
|
||||||
bool op::v0::Clamp::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v0::Clamp::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Clamp_evaluate)
|
||||||
v0_Clamp_evaluate,
|
{
|
||||||
return clamp::evaluate_clamp(
|
return clamp::evaluate_clamp(
|
||||||
inputs[0], outputs[0], get_min(), get_max(), shape_size(get_input_shape(0))));
|
inputs[0], outputs[0], get_min(), get_max(), shape_size(get_input_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -144,9 +144,10 @@ namespace
|
|||||||
|
|
||||||
bool op::Concat::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Concat::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Concat_evaluate,
|
NGRAPH_OP_SCOPE(v0_Concat_evaluate)
|
||||||
auto concat_axis =
|
{
|
||||||
get_axis() < 0 ? get_axis() + inputs[0]->get_shape().size() : get_axis();
|
auto concat_axis = get_axis() < 0 ? get_axis() + inputs[0]->get_shape().size() : get_axis();
|
||||||
return evaluate_concat(inputs, outputs[0], concat_axis));
|
return evaluate_concat(inputs, outputs[0], concat_axis);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -638,9 +638,12 @@ bool op::v0::Constant::visit_attributes(AttributeVisitor& visitor)
|
|||||||
bool op::v0::Constant::evaluate(const HostTensorVector& outputs,
|
bool op::v0::Constant::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Constant_evaluate, auto output = outputs[0];
|
NGRAPH_OP_SCOPE(v0_Constant_evaluate)
|
||||||
output->write(get_data_ptr(), output->get_size_in_bytes());
|
{
|
||||||
return true);
|
auto output = outputs[0];
|
||||||
|
output->write(get_data_ptr(), output->get_size_in_bytes());
|
||||||
|
return true;
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -66,8 +66,10 @@ namespace convert
|
|||||||
#define TYPE_OUT_CASE(a, ...) \
|
#define TYPE_OUT_CASE(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(evaluate_covert_out, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(evaluate_covert_out, _, a)) \
|
||||||
rc = evaluate<INPUT_ET, element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
rc = evaluate<INPUT_ET, element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break
|
break
|
||||||
|
|
||||||
@ -117,7 +119,9 @@ namespace convert
|
|||||||
bool op::v0::Convert::evaluate(const HostTensorVector& output_values,
|
bool op::v0::Convert::evaluate(const HostTensorVector& output_values,
|
||||||
const HostTensorVector& input_values) const
|
const HostTensorVector& input_values) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Convert_evaluate,
|
NGRAPH_OP_SCOPE(v0_Convert_evaluate)
|
||||||
return convert::evaluate_convert(input_values[0], output_values[0]));
|
{
|
||||||
|
return convert::evaluate_convert(input_values[0], output_values[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -78,8 +78,9 @@ namespace cosop
|
|||||||
|
|
||||||
bool op::Cos::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Cos::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Cos_evaluate)
|
||||||
v0_Cos_evaluate,
|
{
|
||||||
return cosop::evaluate_cos(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return cosop::evaluate_cos(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -77,8 +77,9 @@ namespace coshop
|
|||||||
|
|
||||||
bool op::Cosh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Cosh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Cosh_evaluate)
|
||||||
v0_Cosh_evaluate,
|
{
|
||||||
return coshop::evaluate_cosh(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return coshop::evaluate_cosh(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -243,7 +243,7 @@ bool op::DepthToSpace::evaluate_depth_to_space(const HostTensorVector& outputs,
|
|||||||
bool op::DepthToSpace::evaluate(const HostTensorVector& outputs,
|
bool op::DepthToSpace::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_DepthToSpace_evaluate, return evaluate_depth_to_space(outputs, inputs));
|
NGRAPH_OP_SCOPE(v0_DepthToSpace_evaluate) { return evaluate_depth_to_space(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
namespace ngraph
|
namespace ngraph
|
||||||
|
@ -106,8 +106,10 @@ shared_ptr<Node> op::v1::Divide::clone_with_new_inputs(const OutputVector& new_a
|
|||||||
|
|
||||||
bool op::v1::Divide::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Divide::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Divide_evaluate,
|
NGRAPH_OP_SCOPE(v1_Divide_evaluate)
|
||||||
return divide::evaluate_divide(
|
{
|
||||||
inputs[0], inputs[1], outputs[0], get_autob(), is_pythondiv()));
|
return divide::evaluate_divide(
|
||||||
|
inputs[0], inputs[1], outputs[0], get_autob(), is_pythondiv());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -83,7 +83,9 @@ shared_ptr<Node> op::v1::Equal::clone_with_new_inputs(const OutputVector& new_ar
|
|||||||
|
|
||||||
bool op::v1::Equal::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Equal::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Equal_evaluate,
|
NGRAPH_OP_SCOPE(v1_Equal_evaluate)
|
||||||
return equal::evaluate_equal(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
return equal::evaluate_equal(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -76,8 +76,9 @@ namespace erfop
|
|||||||
|
|
||||||
bool op::Erf::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Erf::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Erf_evaluate)
|
||||||
v0_Erf_evaluate,
|
{
|
||||||
return erfop::evaluate_erf(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return erfop::evaluate_erf(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -76,8 +76,9 @@ namespace expop
|
|||||||
|
|
||||||
bool op::Exp::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Exp::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Exp_evaluate)
|
||||||
v0_Exp_evaluate,
|
{
|
||||||
return expop::evaluate_exp(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return expop::evaluate_exp(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -88,8 +88,9 @@ namespace floorop
|
|||||||
|
|
||||||
bool op::Floor::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Floor::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Floor_evaluate)
|
||||||
v0_Floor_evaluate,
|
{
|
||||||
return floorop::evaluate_floor(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return floorop::evaluate_floor(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -82,9 +82,10 @@ namespace floor_mod
|
|||||||
bool op::v1::FloorMod::evaluate(const HostTensorVector& outputs,
|
bool op::v1::FloorMod::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_FloorMod_evaluate)
|
||||||
v1_FloorMod_evaluate,
|
{
|
||||||
return floor_mod::evaluate_floor_mod(inputs[0], inputs[1], outputs[0], get_autob()));
|
return floor_mod::evaluate_floor_mod(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -313,7 +313,7 @@ bool op::v1::Gather::evaluate_gather(const HostTensorVector& outputs,
|
|||||||
|
|
||||||
bool op::v1::Gather::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Gather::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Gather_evaluate, return evaluate_gather(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_Gather_evaluate) { return evaluate_gather(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -84,8 +84,9 @@ shared_ptr<Node> op::v1::Greater::clone_with_new_inputs(const OutputVector& new_
|
|||||||
bool op::v1::Greater::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Greater::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_Greater_evaluate)
|
||||||
v1_Greater_evaluate,
|
{
|
||||||
return greaterop::evaluate_greater(inputs[0], inputs[1], outputs[0], get_autob()));
|
return greaterop::evaluate_greater(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -84,8 +84,10 @@ shared_ptr<Node> op::v1::GreaterEqual::clone_with_new_inputs(const OutputVector&
|
|||||||
bool op::v1::GreaterEqual::evaluate(const HostTensorVector& outputs,
|
bool op::v1::GreaterEqual::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_GreaterEqual_evaluate,
|
NGRAPH_OP_SCOPE(v1_GreaterEqual_evaluate)
|
||||||
return greater_equalop::evaluate_greater_equal(
|
{
|
||||||
inputs[0], inputs[1], outputs[0], get_autob()));
|
return greater_equalop::evaluate_greater_equal(
|
||||||
|
inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -73,8 +73,9 @@ namespace
|
|||||||
bool op::v5::HSigmoid::evaluate(const HostTensorVector& outputs,
|
bool op::v5::HSigmoid::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v5_HSigmoid_evaluate)
|
||||||
v5_HSigmoid_evaluate,
|
{
|
||||||
return evaluate_hsigmoid(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return evaluate_hsigmoid(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -72,8 +72,9 @@ namespace hswish
|
|||||||
|
|
||||||
bool op::v4::HSwish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v4::HSwish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v4_HSwish_evaluate)
|
||||||
v4_HSwish_evaluate,
|
{
|
||||||
return hswish::evaluate_hswish(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return hswish::evaluate_hswish(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -497,7 +497,7 @@ bool op::v4::Interpolate::evaluate_interpolate(const HostTensorVector& outputs,
|
|||||||
bool op::v4::Interpolate::evaluate(const HostTensorVector& outputs,
|
bool op::v4::Interpolate::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v4_Interpolate_evaluate, return evaluate_interpolate(outputs, inputs));
|
NGRAPH_OP_SCOPE(v4_Interpolate_evaluate) { return evaluate_interpolate(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -83,7 +83,9 @@ shared_ptr<Node> op::v1::Less::clone_with_new_inputs(const OutputVector& new_arg
|
|||||||
|
|
||||||
bool op::v1::Less::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Less::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Less_evaluate,
|
NGRAPH_OP_SCOPE(v1_Less_evaluate)
|
||||||
return lessop::evaluate_less(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
return lessop::evaluate_less(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -84,8 +84,9 @@ namespace less_equalop
|
|||||||
bool op::v1::LessEqual::evaluate(const HostTensorVector& outputs,
|
bool op::v1::LessEqual::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_LessEqual_evaluate)
|
||||||
v1_LessEqual_evaluate,
|
{
|
||||||
return less_equalop::evaluate_less_equal(inputs[0], inputs[1], outputs[0], get_autob()));
|
return less_equalop::evaluate_less_equal(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -76,8 +76,9 @@ namespace logop
|
|||||||
|
|
||||||
bool op::Log::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Log::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Log_evaluate)
|
||||||
v0_Log_evaluate,
|
{
|
||||||
return logop::evaluate_log(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return logop::evaluate_log(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -390,13 +390,15 @@ Output<Node> op::v5::Loop::get_concatenated_slices(const Output<Node>& value,
|
|||||||
|
|
||||||
bool op::v5::Loop::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v5::Loop::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v5_Loop_evaluate,
|
NGRAPH_OP_SCOPE(v5_Loop_evaluate)
|
||||||
runtime::reference::loop(m_body,
|
{
|
||||||
m_output_descriptions,
|
runtime::reference::loop(m_body,
|
||||||
m_input_descriptions,
|
m_output_descriptions,
|
||||||
m_special_body_ports,
|
m_input_descriptions,
|
||||||
outputs,
|
m_special_body_ports,
|
||||||
inputs);
|
outputs,
|
||||||
return true);
|
inputs);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -259,9 +259,11 @@ namespace matmul
|
|||||||
|
|
||||||
bool op::MatMul::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::MatMul::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_MatMul_evaluate,
|
NGRAPH_OP_SCOPE(v0_MatMul_evaluate)
|
||||||
return matmul::evaluate_matmul(
|
{
|
||||||
inputs[0], inputs[1], outputs[0], get_transpose_a(), get_transpose_b()));
|
return matmul::evaluate_matmul(
|
||||||
|
inputs[0], inputs[1], outputs[0], get_transpose_a(), get_transpose_b());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -77,8 +77,9 @@ shared_ptr<Node> op::v1::ReduceMax::clone_with_new_inputs(const OutputVector& ne
|
|||||||
bool op::v1::ReduceMax::evaluate(const HostTensorVector& outputs,
|
bool op::v1::ReduceMax::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_ReduceMax_evaluate)
|
||||||
v1_ReduceMax_evaluate,
|
{
|
||||||
return maxop::evaluate_max(inputs[0], outputs[0], get_reduction_axes(), get_keep_dims()));
|
return maxop::evaluate_max(inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -229,6 +229,6 @@ bool op::v1::MaxPool::evaluate_maxpool(const HostTensorVector& outputs,
|
|||||||
bool op::v1::MaxPool::evaluate(const HostTensorVector& outputs,
|
bool op::v1::MaxPool::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_MaxPool_evaluate, return evaluate_maxpool(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_MaxPool_evaluate) { return evaluate_maxpool(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -91,8 +91,9 @@ shared_ptr<Node> op::v1::Maximum::clone_with_new_inputs(const OutputVector& new_
|
|||||||
bool op::v1::Maximum::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Maximum::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_Maximum_evaluate)
|
||||||
v1_Maximum_evaluate,
|
{
|
||||||
return maximumop::evaluate_maximum(inputs[0], inputs[1], outputs[0], get_autob()));
|
return maximumop::evaluate_maximum(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -79,8 +79,9 @@ shared_ptr<Node> op::v1::ReduceMin::clone_with_new_inputs(const OutputVector& ne
|
|||||||
bool op::v1::ReduceMin::evaluate(const HostTensorVector& outputs,
|
bool op::v1::ReduceMin::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_ReduceMin_evaluate)
|
||||||
v1_ReduceMin_evaluate,
|
{
|
||||||
return minop::evaluate_min(inputs[0], outputs[0], get_reduction_axes(), get_keep_dims()));
|
return minop::evaluate_min(inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -89,8 +89,9 @@ shared_ptr<Node> op::v1::Minimum::clone_with_new_inputs(const OutputVector& new_
|
|||||||
bool op::v1::Minimum::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Minimum::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_Minimum_evaluate)
|
||||||
v1_Minimum_evaluate,
|
{
|
||||||
return minimumop::evaluate_minimum(inputs[0], inputs[1], outputs[0], get_autob()));
|
return minimumop::evaluate_minimum(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -77,8 +77,9 @@ namespace mish
|
|||||||
|
|
||||||
bool op::v4::Mish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v4::Mish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v4_Mish_evaluate)
|
||||||
v4_Mish_evaluate,
|
{
|
||||||
return mish::evaluate_mish(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return mish::evaluate_mish(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -84,9 +84,10 @@ shared_ptr<Node> op::v0::Multiply::clone_with_new_inputs(const OutputVector& new
|
|||||||
bool op::v0::Multiply::evaluate(const HostTensorVector& outputs,
|
bool op::v0::Multiply::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Multiply_evaluate)
|
||||||
v0_Multiply_evaluate,
|
{
|
||||||
return multiplyop::evaluate_multiply(inputs[0], inputs[1], outputs[0], get_autob()));
|
return multiplyop::evaluate_multiply(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -111,8 +112,9 @@ shared_ptr<Node> op::v1::Multiply::clone_with_new_inputs(const OutputVector& new
|
|||||||
bool op::v1::Multiply::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Multiply::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_Multiply_evaluate)
|
||||||
v1_Multiply_evaluate,
|
{
|
||||||
return multiplyop::evaluate_multiply(inputs[0], inputs[1], outputs[0], get_autob()));
|
return multiplyop::evaluate_multiply(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -73,9 +73,11 @@ namespace negativeop
|
|||||||
|
|
||||||
bool op::Negative::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Negative::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Negative_evaluate,
|
NGRAPH_OP_SCOPE(v0_Negative_evaluate)
|
||||||
return negativeop::evaluate_negative(
|
{
|
||||||
inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return negativeop::evaluate_negative(
|
||||||
|
inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -118,10 +118,13 @@ namespace nonzero
|
|||||||
#define TYPE_OUT_CASE(a, ...) \
|
#define TYPE_OUT_CASE(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(evaluate_nonzero_out, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(evaluate_nonzero_out, _, a)) \
|
||||||
rc = evaluate_nonzero_execute<INPUT_ET, element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
rc = evaluate_nonzero_execute<INPUT_ET, element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break
|
||||||
|
|
||||||
template <element::Type_t INPUT_ET>
|
template <element::Type_t INPUT_ET>
|
||||||
bool evaluate(const HostTensorPtr& input, const HostTensorPtr& output)
|
bool evaluate(const HostTensorPtr& input, const HostTensorPtr& output)
|
||||||
{
|
{
|
||||||
@ -158,6 +161,9 @@ namespace nonzero
|
|||||||
bool op::v3::NonZero::evaluate(const HostTensorVector& outputs,
|
bool op::v3::NonZero::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v3_NonZero_evaluate, return nonzero::evaluate_nonzero(inputs[0], outputs[0]));
|
NGRAPH_OP_SCOPE(v3_NonZero_evaluate)
|
||||||
|
{
|
||||||
|
return nonzero::evaluate_nonzero(inputs[0], outputs[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -91,8 +91,9 @@ namespace notop
|
|||||||
bool op::v1::LogicalNot::evaluate(const HostTensorVector& outputs,
|
bool op::v1::LogicalNot::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_LogicalNot_evaluate)
|
||||||
v1_LogicalNot_evaluate,
|
{
|
||||||
return notop::evaluate_not(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return notop::evaluate_not(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -84,9 +84,10 @@ shared_ptr<Node> op::v1::NotEqual::clone_with_new_inputs(const OutputVector& new
|
|||||||
bool op::v1::NotEqual::evaluate(const HostTensorVector& outputs,
|
bool op::v1::NotEqual::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_NotEqual_evaluate)
|
||||||
v1_NotEqual_evaluate,
|
{
|
||||||
return not_equalop::evaluate_not_equal(inputs[0], inputs[1], outputs[0], get_autob()));
|
return not_equalop::evaluate_not_equal(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -159,12 +159,14 @@ namespace detail
|
|||||||
#define TYPE_OUT_CASE(a, ...) \
|
#define TYPE_OUT_CASE(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(evaluate_one_hot_out, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(evaluate_one_hot_out, _, a)) \
|
||||||
using IT = typename element_type_traits<element::Type_t::a>::value_type; \
|
{ \
|
||||||
using OT = typename element_type_traits<out_t>::value_type; \
|
using IT = typename element_type_traits<element::Type_t::a>::value_type; \
|
||||||
rc = evaluate<IT, OT>(__VA_ARGS__)); \
|
using OT = typename element_type_traits<out_t>::value_type; \
|
||||||
|
rc = evaluate<IT, OT>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break
|
||||||
|
|
||||||
template <element::Type_t out_t>
|
template <element::Type_t out_t>
|
||||||
bool evaluate(const HostTensorVector& output_values,
|
bool evaluate(const HostTensorVector& output_values,
|
||||||
@ -206,7 +208,9 @@ namespace detail
|
|||||||
bool op::v1::OneHot::evaluate(const HostTensorVector& output_values,
|
bool op::v1::OneHot::evaluate(const HostTensorVector& output_values,
|
||||||
const HostTensorVector& input_values) const
|
const HostTensorVector& input_values) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_OneHot_evaluate,
|
NGRAPH_OP_SCOPE(v1_OneHot_evaluate)
|
||||||
return detail::evaluate_onehot(output_values, input_values, get_axis()););
|
{
|
||||||
|
return detail::evaluate_onehot(output_values, input_values, get_axis());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -82,7 +82,9 @@ namespace logor
|
|||||||
bool op::v1::LogicalOr::evaluate(const HostTensorVector& outputs,
|
bool op::v1::LogicalOr::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_LogicalOr_evaluate,
|
NGRAPH_OP_SCOPE(v1_LogicalOr_evaluate)
|
||||||
return logor::evaluate_logor(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
return logor::evaluate_logor(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -243,6 +243,6 @@ bool op::v1::Pad::evaluate_pad(const HostTensorVector& outputs,
|
|||||||
|
|
||||||
bool op::v1::Pad::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Pad::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Pad_evaluate, return evaluate_pad(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_Pad_evaluate) { return evaluate_pad(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -86,7 +86,9 @@ shared_ptr<Node> op::v1::Power::clone_with_new_inputs(const OutputVector& new_ar
|
|||||||
|
|
||||||
bool op::v1::Power::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Power::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Power_evaluate,
|
NGRAPH_OP_SCOPE(v1_Power_evaluate)
|
||||||
return power::evaluate_power(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
return power::evaluate_power(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -127,7 +127,9 @@ namespace prelu
|
|||||||
|
|
||||||
bool op::PRelu::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::PRelu::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_PRelu_evaluate,
|
NGRAPH_OP_SCOPE(v0_PRelu_evaluate)
|
||||||
return prelu::evaluate_prelu(inputs[0], inputs[1], outputs[0]););
|
{
|
||||||
|
return prelu::evaluate_prelu(inputs[0], inputs[1], outputs[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -192,11 +192,13 @@ namespace prior_box
|
|||||||
bool op::v0::PriorBox::evaluate(const HostTensorVector& outputs,
|
bool op::v0::PriorBox::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_PriorBox_evaluate,
|
NGRAPH_OP_SCOPE(v0_PriorBox_evaluate)
|
||||||
// Todo (itikhono): enable the use of the reference implementation after
|
{
|
||||||
// supporting constants as
|
// Todo (itikhono): enable the use of the reference implementation after
|
||||||
// outputs in plugins
|
// supporting constants as
|
||||||
// return evaluate_prior_box(inputs[0], inputs[1], outputs[0], get_attrs());
|
// outputs in plugins
|
||||||
return false);
|
// return evaluate_prior_box(inputs[0], inputs[1], outputs[0], get_attrs());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -165,11 +165,13 @@ namespace prior_box_clustered
|
|||||||
bool op::v0::PriorBoxClustered::evaluate(const HostTensorVector& outputs,
|
bool op::v0::PriorBoxClustered::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_PriorBoxClustered_evaluate,
|
NGRAPH_OP_SCOPE(v0_PriorBoxClustered_evaluate)
|
||||||
// Todo (itikhono): enable the use of the reference implementation after
|
{
|
||||||
// supporting constants as
|
// Todo (itikhono): enable the use of the reference implementation after
|
||||||
// outputs in plugins
|
// supporting constants as
|
||||||
// return evaluate_prior_box(inputs[0], inputs[1], outputs[0], get_attrs());
|
// outputs in plugins
|
||||||
return false);
|
// return evaluate_prior_box(inputs[0], inputs[1], outputs[0], get_attrs());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -300,11 +300,14 @@ namespace rangeop
|
|||||||
|
|
||||||
bool op::v4::Range::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v4::Range::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v4_Range_evaluate, HostTensorPtr out = outputs[0];
|
NGRAPH_OP_SCOPE(v4_Range_evaluate)
|
||||||
HostTensorPtr start = inputs[0];
|
{
|
||||||
HostTensorPtr stop = inputs[1];
|
HostTensorPtr out = outputs[0];
|
||||||
HostTensorPtr step = inputs[2];
|
HostTensorPtr start = inputs[0];
|
||||||
return rangeop::evaluate_power(out, start, stop, step, m_output_type, 4));
|
HostTensorPtr stop = inputs[1];
|
||||||
|
HostTensorPtr step = inputs[2];
|
||||||
|
return rangeop::evaluate_power(out, start, stop, step, m_output_type, 4);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -496,10 +499,13 @@ void positive_range(T start_val, T stop_val, T step_val)
|
|||||||
|
|
||||||
bool op::v0::Range::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v0::Range::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(op_v0_Range_evaluate)
|
||||||
op_v0_Range_evaluate, HostTensorPtr out = outputs[0]; HostTensorPtr start = inputs[0];
|
{
|
||||||
|
HostTensorPtr out = outputs[0];
|
||||||
|
HostTensorPtr start = inputs[0];
|
||||||
HostTensorPtr stop = inputs[1];
|
HostTensorPtr stop = inputs[1];
|
||||||
HostTensorPtr step = inputs[2];
|
HostTensorPtr step = inputs[2];
|
||||||
return rangeop::evaluate_power(out, start, stop, step, start->get_element_type(), 0));
|
return rangeop::evaluate_power(out, start, stop, step, start->get_element_type(), 0);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -81,8 +81,10 @@ namespace reduce_l1
|
|||||||
bool op::v4::ReduceL1::evaluate(const HostTensorVector& outputs,
|
bool op::v4::ReduceL1::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v4_ReduceL1_evaluate,
|
NGRAPH_OP_SCOPE(v4_ReduceL1_evaluate)
|
||||||
return reduce_l1::evaluate_sum(
|
{
|
||||||
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims()));
|
return reduce_l1::evaluate_sum(
|
||||||
|
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -79,8 +79,10 @@ namespace reduce_l2
|
|||||||
bool op::v4::ReduceL2::evaluate(const HostTensorVector& outputs,
|
bool op::v4::ReduceL2::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v4_ReduceL2_evaluate,
|
NGRAPH_OP_SCOPE(v4_ReduceL2_evaluate)
|
||||||
return reduce_l2::evaluate_reduce_l2(
|
{
|
||||||
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims()));
|
return reduce_l2::evaluate_reduce_l2(
|
||||||
|
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -75,9 +75,12 @@ namespace
|
|||||||
bool op::v1::ReduceLogicalAnd::evaluate(const HostTensorVector& outputs,
|
bool op::v1::ReduceLogicalAnd::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_ReduceLogicalAnd_evaluate, const auto& data = inputs[0];
|
NGRAPH_OP_SCOPE(v1_ReduceLogicalAnd_evaluate)
|
||||||
const auto& axes = inputs[1];
|
{
|
||||||
const auto& out = outputs[0];
|
const auto& data = inputs[0];
|
||||||
return evaluate_reduce_logical_and(data, axes, out, get_keep_dims()));
|
const auto& axes = inputs[1];
|
||||||
|
const auto& out = outputs[0];
|
||||||
|
return evaluate_reduce_logical_and(data, axes, out, get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -75,9 +75,12 @@ namespace
|
|||||||
bool op::v1::ReduceLogicalOr::evaluate(const HostTensorVector& outputs,
|
bool op::v1::ReduceLogicalOr::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_ReduceLogicalOr_evaluate, const auto& data = inputs[0];
|
NGRAPH_OP_SCOPE(v1_ReduceLogicalOr_evaluate)
|
||||||
const auto& axes = inputs[1];
|
{
|
||||||
const auto& out = outputs[0];
|
const auto& data = inputs[0];
|
||||||
return evaluate_reduce_logical_or(data, axes, out, get_keep_dims()));
|
const auto& axes = inputs[1];
|
||||||
|
const auto& out = outputs[0];
|
||||||
|
return evaluate_reduce_logical_or(data, axes, out, get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -78,8 +78,9 @@ namespace mean
|
|||||||
bool op::v1::ReduceMean::evaluate(const HostTensorVector& outputs,
|
bool op::v1::ReduceMean::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_ReduceMean_evaluate)
|
||||||
v1_ReduceMean_evaluate,
|
{
|
||||||
return mean::evaluate_mean(inputs[0], outputs[0], get_reduction_axes(), get_keep_dims()));
|
return mean::evaluate_mean(inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -82,8 +82,10 @@ namespace reduce_prod
|
|||||||
bool op::v1::ReduceProd::evaluate(const HostTensorVector& outputs,
|
bool op::v1::ReduceProd::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_ReduceProd_evaluate,
|
NGRAPH_OP_SCOPE(v1_ReduceProd_evaluate)
|
||||||
return reduce_prod::evaluate_product(
|
{
|
||||||
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims()));
|
return reduce_prod::evaluate_product(
|
||||||
|
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -83,8 +83,10 @@ namespace reduce_sum
|
|||||||
bool op::v1::ReduceSum::evaluate(const HostTensorVector& outputs,
|
bool op::v1::ReduceSum::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_ReduceSum_evaluate,
|
NGRAPH_OP_SCOPE(v1_ReduceSum_evaluate)
|
||||||
return reduce_sum::evaluate_sum(
|
{
|
||||||
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims()));
|
return reduce_sum::evaluate_sum(
|
||||||
|
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -71,9 +71,10 @@ namespace relu
|
|||||||
|
|
||||||
bool op::Relu::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Relu::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Relu_evaluate)
|
||||||
v0_Relu_evaluate,
|
{
|
||||||
return relu::evaluate_relu(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return relu::evaluate_relu(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -230,8 +230,10 @@ shared_ptr<Node> op::v1::Reshape::clone_with_new_inputs(const OutputVector& new_
|
|||||||
#define COMPUTE_OUT_SHAPE_CASE(a, ...) \
|
#define COMPUTE_OUT_SHAPE_CASE(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(compute_reshape_out_shape, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(compute_reshape_out_shape, _, a)) \
|
||||||
reshapeop::compute_output_shape<element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
reshapeop::compute_output_shape<element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -343,7 +345,7 @@ bool op::v1::Reshape::evaluate_reshape(const HostTensorVector& outputs,
|
|||||||
bool op::v1::Reshape::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Reshape::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Reshape_evaluate, return evaluate_reshape(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_Reshape_evaluate) { return evaluate_reshape(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -58,11 +58,14 @@ shared_ptr<Node> op::Result::clone_with_new_inputs(const OutputVector& new_args)
|
|||||||
|
|
||||||
bool op::Result::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Result::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(Result_evaluate, outputs[0]->set_unary(inputs[0]);
|
NGRAPH_OP_SCOPE(Result_evaluate)
|
||||||
void* output = outputs[0]->get_data_ptr();
|
{
|
||||||
void* input = inputs[0]->get_data_ptr();
|
outputs[0]->set_unary(inputs[0]);
|
||||||
memcpy(output, input, outputs[0]->get_size_in_bytes());
|
void* output = outputs[0]->get_data_ptr();
|
||||||
return true);
|
void* input = inputs[0]->get_data_ptr();
|
||||||
|
memcpy(output, input, outputs[0]->get_size_in_bytes());
|
||||||
|
return true;
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -163,8 +163,10 @@ namespace reverseop
|
|||||||
#define GET_AXES(a, ...) \
|
#define GET_AXES(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(get_reverse_axes, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(get_reverse_axes, _, a)) \
|
||||||
reverseop::get_axes<element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
reverseop::get_axes<element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -211,7 +213,7 @@ bool op::v1::Reverse::evaluate_reverse(const HostTensorVector& outputs,
|
|||||||
bool op::v1::Reverse::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Reverse::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Reverse_evaluate, return evaluate_reverse(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_Reverse_evaluate) { return evaluate_reverse(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -299,9 +299,10 @@ namespace roi_alinop
|
|||||||
bool op::v3::ROIAlign::evaluate(const HostTensorVector& outputs,
|
bool op::v3::ROIAlign::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v3_ROIAlign_evaluate)
|
||||||
v3_ROIAlign_evaluate,
|
{
|
||||||
return roi_alinop::evaluate_roi_align(
|
return roi_alinop::evaluate_roi_align(
|
||||||
inputs, outputs[0], m_pooled_h, m_pooled_w, m_sampling_ratio, m_spatial_scale, m_mode));
|
inputs, outputs[0], m_pooled_h, m_pooled_w, m_sampling_ratio, m_spatial_scale, m_mode);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -105,9 +105,11 @@ shared_ptr<Node> op::v5::Round::clone_with_new_inputs(const OutputVector& new_ar
|
|||||||
|
|
||||||
bool op::v5::Round::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v5::Round::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v5_Round_evaluate,
|
NGRAPH_OP_SCOPE(v5_Round_evaluate)
|
||||||
return roundop::evaluate_round(
|
{
|
||||||
inputs[0], outputs[0], shape_size(get_output_shape(0)), get_mode()));
|
return roundop::evaluate_round(
|
||||||
|
inputs[0], outputs[0], shape_size(get_output_shape(0)), get_mode());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -165,8 +165,10 @@ namespace scatter_element_update
|
|||||||
#define TYPE_AXS_CASE(a, ...) \
|
#define TYPE_AXS_CASE(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(scatter_element_update_axs, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(scatter_element_update_axs, _, a)) \
|
||||||
rc = evaluate<DT, IT, element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
rc = evaluate<DT, IT, element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -201,8 +203,10 @@ namespace scatter_element_update
|
|||||||
#define TYPE_IND_CASE(a, ...) \
|
#define TYPE_IND_CASE(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(scatter_element_update_ind, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(scatter_element_update_ind, _, a)) \
|
||||||
rc = evaluate<DT, element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
rc = evaluate<DT, element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -295,7 +299,9 @@ bool op::v3::ScatterElementsUpdate::evaluate_scatter_element_update(
|
|||||||
bool op::v3::ScatterElementsUpdate::evaluate(const HostTensorVector& outputs,
|
bool op::v3::ScatterElementsUpdate::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v3_ScatterElementsUpdate_evaluate,
|
NGRAPH_OP_SCOPE(v3_ScatterElementsUpdate_evaluate)
|
||||||
return evaluate_scatter_element_update(outputs, inputs));
|
{
|
||||||
|
return evaluate_scatter_element_update(outputs, inputs);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -55,9 +55,10 @@ namespace scatter_update
|
|||||||
#define GET_INDICES(a, ...) \
|
#define GET_INDICES(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(get_scatter_update_indices, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(get_scatter_update_indices, _, a)) \
|
||||||
indices_casted_vector = \
|
{ \
|
||||||
scatter_update::get_indices<element::Type_t::a>(__VA_ARGS__)); \
|
indices_casted_vector = scatter_update::get_indices<element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break;
|
break;
|
||||||
|
|
||||||
@ -113,6 +114,6 @@ bool op::v3::ScatterUpdate::evaluate_scatter_update(const HostTensorVector& outp
|
|||||||
bool op::v3::ScatterUpdate::evaluate(const HostTensorVector& outputs,
|
bool op::v3::ScatterUpdate::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v3_ScatterUpdate_evaluate, return evaluate_scatter_update(outputs, inputs));
|
NGRAPH_OP_SCOPE(v3_ScatterUpdate_evaluate) { return evaluate_scatter_update(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -156,9 +156,11 @@ namespace detail
|
|||||||
bool op::v1::Select::evaluate(const HostTensorVector& output_values,
|
bool op::v1::Select::evaluate(const HostTensorVector& output_values,
|
||||||
const HostTensorVector& input_values) const
|
const HostTensorVector& input_values) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Select_evaluate, const auto autob = get_auto_broadcast();
|
NGRAPH_OP_SCOPE(v1_Select_evaluate)
|
||||||
|
{
|
||||||
return detail::evaluate_select(
|
const auto autob = get_auto_broadcast();
|
||||||
output_values, input_values, autob, get_output_element_type(0)));
|
return detail::evaluate_select(
|
||||||
|
output_values, input_values, autob, get_output_element_type(0));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -154,8 +154,10 @@ namespace shape_of
|
|||||||
bool op::v3::ShapeOf::evaluate(const HostTensorVector& output_values,
|
bool op::v3::ShapeOf::evaluate(const HostTensorVector& output_values,
|
||||||
const HostTensorVector& input_values) const
|
const HostTensorVector& input_values) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v3_ShapeOf_evaluate,
|
NGRAPH_OP_SCOPE(v3_ShapeOf_evaluate)
|
||||||
return shape_of::evaluate_shape_of(output_values[0], input_values[0]););
|
{
|
||||||
|
return shape_of::evaluate_shape_of(output_values[0], input_values[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -204,8 +206,10 @@ shared_ptr<Node> op::v0::ShapeOf::clone_with_new_inputs(const OutputVector& new_
|
|||||||
bool op::v0::ShapeOf::evaluate(const HostTensorVector& output_values,
|
bool op::v0::ShapeOf::evaluate(const HostTensorVector& output_values,
|
||||||
const HostTensorVector& input_values) const
|
const HostTensorVector& input_values) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_ShapeOf_evaluate,
|
NGRAPH_OP_SCOPE(v0_ShapeOf_evaluate)
|
||||||
return shape_of::evaluate_shape_of(output_values[0], input_values[0]));
|
{
|
||||||
|
return shape_of::evaluate_shape_of(output_values[0], input_values[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -187,6 +187,6 @@ bool op::ShuffleChannels::evaluate_shuffle_channels(const HostTensorVector& outp
|
|||||||
bool op::ShuffleChannels::evaluate(const HostTensorVector& outputs,
|
bool op::ShuffleChannels::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(ShuffleChannels_evaluate, return evaluate_shuffle_channels(outputs, inputs));
|
NGRAPH_OP_SCOPE(ShuffleChannels_evaluate) { return evaluate_shuffle_channels(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -72,8 +72,9 @@ namespace sigmoid
|
|||||||
|
|
||||||
bool op::Sigmoid::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Sigmoid::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Sigmoid_evaluate)
|
||||||
v0_Sigmoid_evaluate,
|
{
|
||||||
return sigmoid::evaluate_sigmoid(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return sigmoid::evaluate_sigmoid(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -75,8 +75,9 @@ namespace signop
|
|||||||
|
|
||||||
bool op::Sign::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Sign::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Sign_evaluate)
|
||||||
v0_Sign_evaluate,
|
{
|
||||||
return signop::evaluate_sign(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return signop::evaluate_sign(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -77,8 +77,9 @@ namespace sinop
|
|||||||
|
|
||||||
bool op::Sin::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Sin::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Sin_evaluate)
|
||||||
v0_Sin_evaluate,
|
{
|
||||||
return sinop::evaluate_sin(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return sinop::evaluate_sin(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -77,8 +77,9 @@ namespace sinhop
|
|||||||
|
|
||||||
bool op::Sinh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Sinh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Sinh_evaluate)
|
||||||
v0_Sinh_evaluate,
|
{
|
||||||
return sinhop::evaluate_sinh(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return sinhop::evaluate_sinh(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -101,7 +101,10 @@ shared_ptr<Node> op::v1::Softmax::clone_with_new_inputs(const OutputVector& new_
|
|||||||
bool op::v1::Softmax::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Softmax::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Softmax_evaluate, outputs[0]->set_unary(inputs[0]);
|
NGRAPH_OP_SCOPE(v1_Softmax_evaluate)
|
||||||
return evaluate_softmax(inputs[0], outputs[0], AxisSet{m_axis}));
|
{
|
||||||
|
outputs[0]->set_unary(inputs[0]);
|
||||||
|
return evaluate_softmax(inputs[0], outputs[0], AxisSet{m_axis});
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -77,8 +77,9 @@ namespace softplus
|
|||||||
bool op::v4::SoftPlus::evaluate(const HostTensorVector& outputs,
|
bool op::v4::SoftPlus::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v4_SoftPlus_evaluate)
|
||||||
v4_SoftPlus_evaluate,
|
{
|
||||||
return softplus::evaluate_softplus(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return softplus::evaluate_softplus(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -273,6 +273,6 @@ bool ngraph::op::v1::SpaceToBatch::evaluate_space_to_batch(const HostTensorVecto
|
|||||||
bool ngraph::op::v1::SpaceToBatch::evaluate(const HostTensorVector& outputs,
|
bool ngraph::op::v1::SpaceToBatch::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_SpaceToBatch, return evaluate_space_to_batch(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_SpaceToBatch) { return evaluate_space_to_batch(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -228,7 +228,7 @@ bool ngraph::op::v0::SpaceToDepth::evaluate_space_to_depth(const HostTensorVecto
|
|||||||
bool ngraph::op::v0::SpaceToDepth::evaluate(const HostTensorVector& outputs,
|
bool ngraph::op::v0::SpaceToDepth::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_SpaceToDepth_evaluate, return evaluate_space_to_depth(outputs, inputs));
|
NGRAPH_OP_SCOPE(v0_SpaceToDepth_evaluate) { return evaluate_space_to_depth(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -149,7 +149,11 @@ namespace split
|
|||||||
|
|
||||||
bool op::v1::Split::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::Split::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_Split_evaluate, const auto& data = inputs[0]; const auto& axis = inputs[1];
|
NGRAPH_OP_SCOPE(v1_Split_evaluate)
|
||||||
return split::evaluate_split(data, axis, outputs, m_num_splits, this));
|
{
|
||||||
|
const auto& data = inputs[0];
|
||||||
|
const auto& axis = inputs[1];
|
||||||
|
return split::evaluate_split(data, axis, outputs, m_num_splits, this);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -75,8 +75,9 @@ namespace sqrtop
|
|||||||
|
|
||||||
bool op::Sqrt::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Sqrt::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Sqrt_evaluate)
|
||||||
v0_Sqrt_evaluate,
|
{
|
||||||
return sqrtop::evaluate_sqrt(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return sqrtop::evaluate_sqrt(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -173,8 +173,10 @@ namespace squeeze
|
|||||||
bool op::v0::Squeeze::evaluate(const HostTensorVector& outputs,
|
bool op::v0::Squeeze::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Squeeze_evaluate,
|
NGRAPH_OP_SCOPE(v0_Squeeze_evaluate)
|
||||||
return squeeze::evaluate_squeeze(inputs[0], inputs[1], outputs[0]));
|
{
|
||||||
|
return squeeze::evaluate_squeeze(inputs[0], inputs[1], outputs[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -281,17 +281,19 @@ namespace strided_slice
|
|||||||
bool op::v1::StridedSlice::evaluate(const HostTensorVector& output_values,
|
bool op::v1::StridedSlice::evaluate(const HostTensorVector& output_values,
|
||||||
const HostTensorVector& input_values) const
|
const HostTensorVector& input_values) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_StridedSlice_evaluate,
|
NGRAPH_OP_SCOPE(v1_StridedSlice_evaluate)
|
||||||
return strided_slice::evaluate_strided_slice(
|
{
|
||||||
input_values[0],
|
return strided_slice::evaluate_strided_slice(
|
||||||
input_values[1],
|
input_values[0],
|
||||||
input_values[2],
|
input_values[1],
|
||||||
input_values[3],
|
input_values[2],
|
||||||
convert_mask_to_axis_set(get_begin_mask()),
|
input_values[3],
|
||||||
convert_mask_to_axis_set(get_end_mask()),
|
convert_mask_to_axis_set(get_begin_mask()),
|
||||||
convert_mask_to_axis_set(get_new_axis_mask()),
|
convert_mask_to_axis_set(get_end_mask()),
|
||||||
convert_mask_to_axis_set(get_shrink_axis_mask()),
|
convert_mask_to_axis_set(get_new_axis_mask()),
|
||||||
convert_mask_to_axis_set(get_ellipsis_mask()),
|
convert_mask_to_axis_set(get_shrink_axis_mask()),
|
||||||
output_values[0]));
|
convert_mask_to_axis_set(get_ellipsis_mask()),
|
||||||
|
output_values[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -83,8 +83,9 @@ shared_ptr<Node> op::v1::Subtract::clone_with_new_inputs(const OutputVector& new
|
|||||||
bool op::v1::Subtract::evaluate(const HostTensorVector& outputs,
|
bool op::v1::Subtract::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_Subtract_evaluate)
|
||||||
v1_Subtract_evaluate,
|
{
|
||||||
return subtract::evaluate_subtract(inputs[0], inputs[1], outputs[0], get_autob()));
|
return subtract::evaluate_subtract(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -128,8 +128,9 @@ namespace swish
|
|||||||
|
|
||||||
bool op::v4::Swish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v4::Swish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v4_Swish_evaluate)
|
||||||
v4_Swish_evaluate,
|
{
|
||||||
return swish::evaluate_swish(inputs, outputs[0], shape_size(get_output_shape(0))););
|
return swish::evaluate_swish(inputs, outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -78,8 +78,9 @@ namespace tanop
|
|||||||
|
|
||||||
bool op::Tan::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Tan::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Tan_evaluate)
|
||||||
v0_Tan_evaluate,
|
{
|
||||||
return tanop::evaluate_tan(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return tanop::evaluate_tan(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -76,8 +76,9 @@ namespace tanhop
|
|||||||
|
|
||||||
bool op::Tanh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::Tanh::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v0_Tanh_evaluate)
|
||||||
v0_Tanh_evaluate,
|
{
|
||||||
return tanhop::evaluate_tanh(inputs[0], outputs[0], shape_size(get_output_shape(0))));
|
return tanhop::evaluate_tanh(inputs[0], outputs[0], shape_size(get_output_shape(0)));
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -135,6 +135,6 @@ bool op::v0::Tile::evaluate_tile(const HostTensorVector& outputs,
|
|||||||
|
|
||||||
bool op::v0::Tile::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v0::Tile::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Tile_evaluate, return evaluate_tile(outputs, inputs));
|
NGRAPH_OP_SCOPE(v0_Tile_evaluate) { return evaluate_tile(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -67,8 +67,10 @@ namespace topk
|
|||||||
#define EXECUTE_EVALUATE_TOPK(a, ...) \
|
#define EXECUTE_EVALUATE_TOPK(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(exec_topk_eval, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(exec_topk_eval, _, a)) \
|
||||||
rc = evaluate_execute<INPUT_ET, element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
rc = evaluate_execute<INPUT_ET, element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break
|
break
|
||||||
|
|
||||||
@ -189,8 +191,10 @@ namespace topk
|
|||||||
#define CASE_GET_K(a, ...) \
|
#define CASE_GET_K(a, ...) \
|
||||||
case element::Type_t::a: \
|
case element::Type_t::a: \
|
||||||
{ \
|
{ \
|
||||||
NGRAPH_OP_SCOPE(OV_CC_CAT3(topk_get_k, _, a), \
|
NGRAPH_OP_SCOPE(OV_CC_CAT3(topk_get_k, _, a)) \
|
||||||
k = get_k_from_hosttensor<element::Type_t::a>(__VA_ARGS__)); \
|
{ \
|
||||||
|
k = get_k_from_hosttensor<element::Type_t::a>(__VA_ARGS__); \
|
||||||
|
} \
|
||||||
} \
|
} \
|
||||||
break
|
break
|
||||||
|
|
||||||
@ -449,52 +453,49 @@ void op::v1::TopK::set_k(size_t k)
|
|||||||
op::Constant::create(element::i64, Shape{}, {k})->output(0));
|
op::Constant::create(element::i64, Shape{}, {k})->output(0));
|
||||||
}
|
}
|
||||||
|
|
||||||
bool op::v1::TopK::evaluate_topk(const HostTensorVector& outputs,
|
|
||||||
const HostTensorVector& inputs) const
|
|
||||||
{
|
|
||||||
Shape arg_shape = inputs[0]->get_shape();
|
|
||||||
// 1. get axis, mode ( max/min), sort_type
|
|
||||||
size_t axis = ngraph::normalize_axis(this, m_axis, arg_shape.size());
|
|
||||||
bool compute_max = get_mode() == TopKMode::MAX ? true : false;
|
|
||||||
SortType sort_type = get_sort_type();
|
|
||||||
|
|
||||||
// 2. get value of k - from constant node or from HT
|
|
||||||
size_t k = 0;
|
|
||||||
if (op::is_constant(input_value(1).get_node()))
|
|
||||||
{
|
|
||||||
k = read_k_from_constant_node(input_value(1).get_node_shared_ptr(),
|
|
||||||
get_input_element_type(1));
|
|
||||||
NGRAPH_CHECK(k <= arg_shape[axis], "'K' exceeds the dimension of top_k_axis");
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
k = topk::read_k_from_host_tensor(inputs[1]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// 3. Compute output_shape
|
|
||||||
auto output_shape = compute_output_shape(this->description(), inputs[0]->get_shape(), k);
|
|
||||||
|
|
||||||
// do this after compute_output_shape
|
|
||||||
if (k == 0)
|
|
||||||
{
|
|
||||||
// the kernel can't handle k = 0, but output_shape[axis] = arg_shape[axis]
|
|
||||||
k = arg_shape[axis];
|
|
||||||
}
|
|
||||||
|
|
||||||
return topk::evaluate_topk(inputs[0],
|
|
||||||
outputs[1],
|
|
||||||
outputs[0],
|
|
||||||
output_shape,
|
|
||||||
axis,
|
|
||||||
k,
|
|
||||||
compute_max,
|
|
||||||
sort_type,
|
|
||||||
get_index_element_type());
|
|
||||||
}
|
|
||||||
|
|
||||||
bool op::v1::TopK::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v1::TopK::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_TopK_evaluate, return evaluate_topk(outputs, inputs));
|
NGRAPH_OP_SCOPE(v1_TopK_evaluate)
|
||||||
|
{
|
||||||
|
Shape arg_shape = inputs[0]->get_shape();
|
||||||
|
// 1. get axis, mode ( max/min), sort_type
|
||||||
|
size_t axis = ngraph::normalize_axis(this, m_axis, arg_shape.size());
|
||||||
|
bool compute_max = get_mode() == TopKMode::MAX ? true : false;
|
||||||
|
SortType sort_type = get_sort_type();
|
||||||
|
|
||||||
|
// 2. get value of k - from constant node or from HT
|
||||||
|
size_t k = 0;
|
||||||
|
if (op::is_constant(input_value(1).get_node()))
|
||||||
|
{
|
||||||
|
k = read_k_from_constant_node(input_value(1).get_node_shared_ptr(),
|
||||||
|
get_input_element_type(1));
|
||||||
|
NGRAPH_CHECK(k <= arg_shape[axis], "'K' exceeds the dimension of top_k_axis");
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
k = topk::read_k_from_host_tensor(inputs[1]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// 3. Compute output_shape
|
||||||
|
auto output_shape = compute_output_shape(this->description(), inputs[0]->get_shape(), k);
|
||||||
|
|
||||||
|
// do this after compute_output_shape
|
||||||
|
if (k == 0)
|
||||||
|
{
|
||||||
|
// the kernel can't handle k = 0, but output_shape[axis] = arg_shape[axis]
|
||||||
|
k = arg_shape[axis];
|
||||||
|
}
|
||||||
|
|
||||||
|
return topk::evaluate_topk(inputs[0],
|
||||||
|
outputs[1],
|
||||||
|
outputs[0],
|
||||||
|
output_shape,
|
||||||
|
axis,
|
||||||
|
k,
|
||||||
|
compute_max,
|
||||||
|
sort_type,
|
||||||
|
get_index_element_type());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -577,6 +578,6 @@ shared_ptr<Node> op::v3::TopK::clone_with_new_inputs(const OutputVector& new_arg
|
|||||||
|
|
||||||
bool op::v3::TopK::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v3::TopK::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v3_TopK_evaluate, return op::v1::TopK::evaluate(outputs, inputs));
|
NGRAPH_OP_SCOPE(v3_TopK_evaluate) { return op::v1::TopK::evaluate(outputs, inputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -144,8 +144,9 @@ namespace transpose
|
|||||||
bool op::v1::Transpose::evaluate(const HostTensorVector& output_values,
|
bool op::v1::Transpose::evaluate(const HostTensorVector& output_values,
|
||||||
const HostTensorVector& input_values) const
|
const HostTensorVector& input_values) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(v1_Transpose_evaluate)
|
||||||
v1_Transpose_evaluate,
|
{
|
||||||
return transpose::evaluate_transpose(input_values[0], input_values[1], output_values[0]));
|
return transpose::evaluate_transpose(input_values[0], input_values[1], output_values[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -150,8 +150,10 @@ namespace unsqueeze
|
|||||||
bool op::v0::Unsqueeze::evaluate(const HostTensorVector& outputs,
|
bool op::v0::Unsqueeze::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Unsqueeze_evaluate,
|
NGRAPH_OP_SCOPE(v0_Unsqueeze_evaluate)
|
||||||
return unsqueeze::evaluate_unsqueeze(inputs[0], inputs[1], outputs[0]));
|
{
|
||||||
|
return unsqueeze::evaluate_unsqueeze(inputs[0], inputs[1], outputs[0]);
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -361,14 +361,16 @@ bool op::util::BroadcastBase::evaluate(const HostTensorPtr& arg0,
|
|||||||
const HostTensorPtr& out,
|
const HostTensorPtr& out,
|
||||||
const AxisSet& broadcast_axes) const
|
const AxisSet& broadcast_axes) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(util_BroadcastBase_evaluate_axes,
|
NGRAPH_OP_SCOPE(util_BroadcastBase_evaluate_axes)
|
||||||
runtime::reference::broadcast(arg0->get_data_ptr<const char>(),
|
{
|
||||||
out->get_data_ptr<char>(),
|
runtime::reference::broadcast(arg0->get_data_ptr<const char>(),
|
||||||
arg0->get_shape(),
|
out->get_data_ptr<char>(),
|
||||||
out->get_shape(),
|
arg0->get_shape(),
|
||||||
broadcast_axes,
|
out->get_shape(),
|
||||||
arg0->get_element_type().size());
|
broadcast_axes,
|
||||||
return true);
|
arg0->get_element_type().size());
|
||||||
|
return true;
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -500,14 +502,16 @@ Shape op::util::BroadcastBase::get_target_shape(const HostTensorPtr& input1) con
|
|||||||
bool op::util::BroadcastBase::evaluate(const HostTensorVector& outputs,
|
bool op::util::BroadcastBase::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(
|
NGRAPH_OP_SCOPE(util_BroadcastBase_evaluate)
|
||||||
util_BroadcastBase_evaluate, Shape target_shape = get_target_shape(inputs[1]);
|
{
|
||||||
|
Shape target_shape = get_target_shape(inputs[1]);
|
||||||
|
|
||||||
PartialShape result_shape;
|
PartialShape result_shape;
|
||||||
std::pair<bool, AxisSet> pair_broadcast_axes;
|
std::pair<bool, AxisSet> pair_broadcast_axes;
|
||||||
auto arg_shape = inputs[0]->get_shape();
|
auto arg_shape = inputs[0]->get_shape();
|
||||||
|
|
||||||
if (m_mode.m_type == BroadcastType::NONE) {
|
if (m_mode.m_type == BroadcastType::NONE)
|
||||||
|
{
|
||||||
AxisVector axes_mapping_val;
|
AxisVector axes_mapping_val;
|
||||||
const auto axes_mapping_constant =
|
const auto axes_mapping_constant =
|
||||||
as_type_ptr<op::v0::Constant>(input_value(2).get_node_shared_ptr());
|
as_type_ptr<op::v0::Constant>(input_value(2).get_node_shared_ptr());
|
||||||
@ -523,18 +527,27 @@ bool op::util::BroadcastBase::evaluate(const HostTensorVector& outputs,
|
|||||||
pair_broadcast_axes = get_broadcast_axes_none(axes_mapping_val, target_shape.size());
|
pair_broadcast_axes = get_broadcast_axes_none(axes_mapping_val, target_shape.size());
|
||||||
validate_target_shape_none(inputs[0]->get_shape(), axes_mapping_val, target_shape);
|
validate_target_shape_none(inputs[0]->get_shape(), axes_mapping_val, target_shape);
|
||||||
result_shape = target_shape;
|
result_shape = target_shape;
|
||||||
} else if (m_mode.m_type == BroadcastType::PDPD) {
|
}
|
||||||
|
else if (m_mode.m_type == BroadcastType::PDPD)
|
||||||
|
{
|
||||||
result_shape = get_result_shape_pdpd(arg_shape, target_shape, m_mode);
|
result_shape = get_result_shape_pdpd(arg_shape, target_shape, m_mode);
|
||||||
pair_broadcast_axes =
|
pair_broadcast_axes =
|
||||||
get_broadcast_axes_numpy_pdpd(arg_shape, result_shape.to_shape(), m_mode);
|
get_broadcast_axes_numpy_pdpd(arg_shape, result_shape.to_shape(), m_mode);
|
||||||
} else if (m_mode.m_type == BroadcastType::NUMPY) {
|
}
|
||||||
|
else if (m_mode.m_type == BroadcastType::NUMPY)
|
||||||
|
{
|
||||||
result_shape = target_shape;
|
result_shape = target_shape;
|
||||||
validate_target_shape_numpy(arg_shape, target_shape);
|
validate_target_shape_numpy(arg_shape, target_shape);
|
||||||
pair_broadcast_axes =
|
pair_broadcast_axes =
|
||||||
get_broadcast_axes_numpy_pdpd(arg_shape, result_shape.to_shape(), m_mode);
|
get_broadcast_axes_numpy_pdpd(arg_shape, result_shape.to_shape(), m_mode);
|
||||||
} else { ngraph_error("Unsupported BroadcastType "); }
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
ngraph_error("Unsupported BroadcastType ");
|
||||||
|
}
|
||||||
|
|
||||||
return evaluate_broadcast(
|
return evaluate_broadcast(
|
||||||
inputs[0], outputs[0], pair_broadcast_axes, result_shape.to_shape()));
|
inputs[0], outputs[0], pair_broadcast_axes, result_shape.to_shape());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -216,6 +216,6 @@ bool op::v1::VariadicSplit::evaluate_variadic_split(const HostTensorVector& inpu
|
|||||||
bool op::v1::VariadicSplit::evaluate(const HostTensorVector& outputs,
|
bool op::v1::VariadicSplit::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_VariadicSplit_evaluate, return evaluate_variadic_split(inputs, outputs));
|
NGRAPH_OP_SCOPE(v1_VariadicSplit_evaluate) { return evaluate_variadic_split(inputs, outputs); }
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -86,8 +86,10 @@ namespace logxor
|
|||||||
bool op::v1::LogicalXor::evaluate(const HostTensorVector& outputs,
|
bool op::v1::LogicalXor::evaluate(const HostTensorVector& outputs,
|
||||||
const HostTensorVector& inputs) const
|
const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v1_LogicalXor_evaluate,
|
NGRAPH_OP_SCOPE(v1_LogicalXor_evaluate)
|
||||||
return logxor::evaluate_logxor(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
return logxor::evaluate_logxor(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -109,7 +111,9 @@ shared_ptr<Node> op::v0::Xor::clone_with_new_inputs(const OutputVector& new_args
|
|||||||
|
|
||||||
bool op::v0::Xor::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
bool op::v0::Xor::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||||
{
|
{
|
||||||
NGRAPH_OP_SCOPE(v0_Xor_evaluate,
|
NGRAPH_OP_SCOPE(v0_Xor_evaluate)
|
||||||
return logxor::evaluate_logxor(inputs[0], inputs[1], outputs[0], get_autob()));
|
{
|
||||||
|
return logxor::evaluate_logxor(inputs[0], inputs[1], outputs[0], get_autob());
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user