diff --git a/docs/nbdoc/consts.py b/docs/nbdoc/consts.py
index ac37de068b1..42424747c0b 100644
--- a/docs/nbdoc/consts.py
+++ b/docs/nbdoc/consts.py
@@ -8,7 +8,7 @@ repo_owner = "openvinotoolkit"
repo_name = "openvino_notebooks"
-artifacts_link = "http://repository.toolbox.iotg.sclab.intel.com/projects/ov-notebook/0.1.0-latest/20230104220806/dist/rst_files/"
+artifacts_link = "http://repository.toolbox.iotg.sclab.intel.com/projects/ov-notebook/0.1.0-latest/20230109220810/dist/rst_files/"
blacklisted_extensions = ['.xml', '.bin']
@@ -18,8 +18,8 @@ section_names = ["Getting Started", "Convert & Optimize",
# Templates
binder_template = """
-This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub.
-See the |installation_link| for instructions to run this tutorial locally on Windows, Linux or macOS.
+This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub.
+See the |installation_link| for instructions to run this tutorial locally on Windows, Linux or macOS.
To run without installing anything, click the launch binder button.
|binder_link| |github_link|
@@ -28,7 +28,7 @@ To run without installing anything, click the launch binder button.
installation guide
-.. |binder_link| raw:: html
+.. |binder_link| raw:: html
@@ -39,7 +39,7 @@ To run without installing anything, click the launch binder button.
\n
"""
no_binder_template = """
-This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub.
+This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub.
See the |installation_link| for instructions to run this tutorial locally on Windows, Linux or macOS.
|github_link|
diff --git a/docs/tutorials.md b/docs/tutorials.md
index 357342e7e9a..b4b8834ecf0 100644
--- a/docs/tutorials.md
+++ b/docs/tutorials.md
@@ -5,13 +5,13 @@
.. _notebook tutorials:
.. meta::
- :description: A collection of Python tutorials run on Jupyter notebooks. The
- tutorials explain how to use OpenVINO™ toolkit for optimized
+ :description: A collection of Python tutorials run on Jupyter notebooks. The
+ tutorials explain how to use OpenVINO™ toolkit for optimized
deep learning inference.
- :keywords: OpenVINO™ toolkit, Jupyter, Jupyter notebooks, tutorials, Python
- API, Python, deep learning, inference, model inference, infer a
- model, Binder, object detection, quantization, image
- classification, speech recognition, OCR, OpenVINO IR, deep
+ :keywords: OpenVINO™ toolkit, Jupyter, Jupyter notebooks, tutorials, Python
+ API, Python, deep learning, inference, model inference, infer a
+ model, Binder, object detection, quantization, image
+ classification, speech recognition, OCR, OpenVINO IR, deep
learning model, AI, neural networks
.. toctree::
@@ -22,21 +22,21 @@
notebooks-installation
notebooks/notebooks
-This collection of Python tutorials are written for running on Jupyter notebooks.
-The tutorials provide an introduction to the OpenVINO™ toolkit and explain how to
-use the Python API and tools for optimized deep learning inference. You can run the
-code one section at a time to see how to integrate your application with OpenVINO
+This collection of Python tutorials are written for running on Jupyter notebooks.
+The tutorials provide an introduction to the OpenVINO™ toolkit and explain how to
+use the Python API and tools for optimized deep learning inference. You can run the
+code one section at a time to see how to integrate your application with OpenVINO
libraries.
-Notebooks with a |binder logo| button can be run without installing anything.
-Once you have found the tutorial of your interest, just click the button next to
+Notebooks with a |binder logo| button can be run without installing anything.
+Once you have found the tutorial of your interest, just click the button next to
the name of it and `Binder `__ will start it in a new tab of a browser.
Binder is a free online service with limited resources (for more information about it,
see the `Additional Resources <#-additional-resources>`__ section).
.. note::
- For the best performance, more control and resources, you should run the notebooks locally.
- Follow the `Installation Guide `__ in order to get information
+ For the best performance, more control and resources, you should run the notebooks locally.
+ Follow the `Installation Guide `__ in order to get information
on how to run and manage the notebooks on your machine.
@@ -118,7 +118,7 @@ Tutorials that explain how to optimize and quantize models with OpenVINO tools.
| `105-language-quantize-bert `__ | Optimize and quantize a pre-trained BERT model |
+------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
| `106-auto-device `__ | Demonstrates how to use AUTO Device |
- +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
+ +------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
| `107-speech-recognition-quantization `__ | Optimize and quantize a pre-trained Wav2Vec2 speech model |
+------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+
| `110-ct-segmentation-quantize `__ | Quantize a kidney segmentation model and show live inference |
@@ -210,6 +210,9 @@ Demos that demonstrate inference on a particular model.
+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+
| `228-clip-zero-shot-image-classification `__ | Perform Zero-shot Image Classification with CLIP and OpenVINO | |n228-img1| |
+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+
+ | `229-distilbert-sequence-classification `__ | Sequence Classification with OpenVINO | |n229-img1| |
+ +-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+
+
.. raw:: html
@@ -219,7 +222,7 @@ Demos that demonstrate inference on a particular model.
`Model Training`_
------------------
-Tutorials that include code to train neural networks.
+Tutorials that include code to train neural networks.
+-------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------+
@@ -409,6 +412,8 @@ Made with `contributors-img `__.
:target: https://user-images.githubusercontent.com/29454499/204548693-1304ef33-c790-490d-8a8b-d5766acb6254.png
.. |n228-img1| image:: https://user-images.githubusercontent.com/29454499/207795060-437b42f9-e801-4332-a91f-cc26471e5ba2.png
:target: https://user-images.githubusercontent.com/29454499/207795060-437b42f9-e801-4332-a91f-cc26471e5ba2.png
+.. |n229-img1| image:: https://user-images.githubusercontent.com/95271966/206130638-d9847414-357a-4c79-9ca7-76f4ae5a6d7f.png
+ :target: https://user-images.githubusercontent.com/95271966/206130638-d9847414-357a-4c79-9ca7-76f4ae5a6d7f.png
.. |n301-img1| image:: https://user-images.githubusercontent.com/15709723/127779607-8fa34947-1c35-4260-8d04-981c41a2a2cc.png
:target: https://user-images.githubusercontent.com/15709723/127779607-8fa34947-1c35-4260-8d04-981c41a2a2cc.png
.. |n401-img1| image:: https://user-images.githubusercontent.com/4547501/141471665-82b28c86-cf64-4bfe-98b3-c314658f2d96.gif
@@ -497,4 +502,3 @@ Made with `contributors-img `__.
@endsphinxdirective
-