Restore CC feature in operators evaluate (#21446)

This commit is contained in:
Pawel Raasz 2023-12-05 08:23:19 +01:00 committed by GitHub
parent f9d20d5aa0
commit 24209239bf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
73 changed files with 718 additions and 475 deletions

View File

@ -42,10 +42,13 @@ bool Abs::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i32, i64, u32, u64>::apply<abs::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Abs_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, i32, i64, u32, u64),
outputs[0], abs::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Abs::has_evaluate() const { bool Abs::has_evaluate() const {

View File

@ -41,10 +41,13 @@ bool ov::op::v0::Acos::evaluate(TensorVector& outputs, const TensorVector& input
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<acos::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Acos_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], acos::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool ov::op::v0::Acos::has_evaluate() const { bool ov::op::v0::Acos::has_evaluate() const {

View File

@ -41,10 +41,13 @@ bool ov::op::v3::Acosh::evaluate(TensorVector& outputs, const TensorVector& inpu
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<acosh::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v3_Acosh_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], acosh::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool ov::op::v3::Acosh::has_evaluate() const { bool ov::op::v3::Acosh::has_evaluate() const {

View File

@ -48,14 +48,16 @@ bool Add::evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) co
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<add::Evaluate>( return IF_TYPE_OF(v1_Add_evaluate,
inputs[0].get_element_type(), OV_PP_ET_LIST(bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
inputs[0], add::Evaluate,
inputs[1], inputs[0].get_element_type(),
outputs[0], inputs[0],
inputs[0].get_shape(), inputs[1],
inputs[1].get_shape(), outputs[0],
get_autob()); inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Add::has_evaluate() const { bool Add::has_evaluate() const {

View File

@ -41,10 +41,13 @@ bool Asin::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<asin::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Asin_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], asin::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Asin::has_evaluate() const { bool Asin::has_evaluate() const {

View File

@ -40,10 +40,13 @@ bool Asinh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<asinh::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v3_Asinh_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], asinh::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Asinh::has_evaluate() const { bool Asinh::has_evaluate() const {

View File

@ -43,10 +43,13 @@ bool Atan::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<atan::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Atan_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], atan::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Atan::has_evaluate() const { bool Atan::has_evaluate() const {

View File

@ -40,10 +40,13 @@ bool op::v3::Atanh::evaluate(TensorVector& outputs, const TensorVector& inputs)
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<atanh::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v3_Atanh_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], atanh::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool op::v3::Atanh::has_evaluate() const { bool op::v3::Atanh::has_evaluate() const {

View File

@ -44,11 +44,13 @@ bool Ceiling::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<ceiling::Evaluate>( return IF_TYPE_OF(v0_Ceiling_evaluate,
inputs[0].get_element_type(), OV_PP_ET_LIST(f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
inputs[0], ceiling::Evaluate,
outputs[0], inputs[0].get_element_type(),
shape_size(inputs[0].get_shape())); inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Ceiling::has_evaluate() const { bool Ceiling::has_evaluate() const {

View File

@ -68,13 +68,15 @@ bool Clamp::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<clamp::Evaluate>( return IF_TYPE_OF(v0_Clamp_evaluate,
inputs[0].get_element_type(), OV_PP_ET_LIST(bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
inputs[0], clamp::Evaluate,
outputs[0], inputs[0].get_element_type(),
get_min(), inputs[0],
get_max(), outputs[0],
shape_size(in_shape)); get_min(),
get_max(),
shape_size(in_shape));
} }
bool Clamp::has_evaluate() const { bool Clamp::has_evaluate() const {

View File

@ -47,10 +47,13 @@ bool Cos::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<cos::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Cos_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], cos::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Cos::has_evaluate() const { bool Cos::has_evaluate() const {

View File

@ -47,10 +47,13 @@ bool Cosh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<cosh::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Cosh_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], cosh::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Cosh::has_evaluate() const { bool Cosh::has_evaluate() const {

View File

@ -35,12 +35,15 @@ bool evaluate(TensorVector& outputs, const TensorVector& inputs, const bool excl
const auto axis = ov::get_tensor_data_as<int64_t>(inputs[1]).front(); const auto axis = ov::get_tensor_data_as<int64_t>(inputs[1]).front();
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f32>::apply<cumsum::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(CumSum_evaluate,
inputs[0], f32,
outputs[0], cumsum::Evaluate,
axis, inputs[0].get_element_type(),
exclusive, inputs[0],
reverse); outputs[0],
axis,
exclusive,
reverse);
} }
} // namespace } // namespace
} // namespace cumsum } // namespace cumsum

View File

@ -242,14 +242,17 @@ bool Divide::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, bf16, f32>::apply<divide::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Divide_evaluate,
inputs[0], OV_PP_ET_LIST(f16, bf16, f32, i32, i64, u32, u64),
inputs[1], divide::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob(), outputs[0],
is_pythondiv()); inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob(),
is_pythondiv());
return true; return true;
} }

View File

@ -101,14 +101,16 @@ bool Equal::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(ov::op::infer_broadcast_shape(this, inputs)); outputs[0].set_shape(ov::op::infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64>::apply<equal::Evaluate>( return IF_TYPE_OF(v1_Equal_evaluate,
inputs[0].get_element_type(), OV_PP_ET_LIST(boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64),
inputs[0], equal::Evaluate,
inputs[1], inputs[0].get_element_type(),
outputs[0], inputs[0],
inputs[0].get_shape(), inputs[1],
inputs[1].get_shape(), outputs[0],
get_autob()); inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Equal::evaluate_lower(TensorVector& output_values) const { bool Equal::evaluate_lower(TensorVector& output_values) const {

View File

@ -43,10 +43,13 @@ bool Erf::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<erf::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Erf_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], erf::Evaluate,
shape_size(in_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Erf::has_evaluate() const { bool Erf::has_evaluate() const {

View File

@ -44,10 +44,13 @@ bool Exp::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<exp::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Exp_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], exp::Evaluate,
shape_size(in_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(in_shape));
} }
bool Exp::has_evaluate() const { bool Exp::has_evaluate() const {

View File

@ -123,10 +123,13 @@ bool Eye::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(output_shape); outputs[0].set_shape(output_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, f64, i8, i32, i64, u8>::apply<eye::Evaluate>(outputs[0].get_element_type(), return IF_TYPE_OF(v9_Eye_evaluate,
outputs[0], OV_PP_ET_LIST(bf16, f16, f32, f64, i8, i32, i64, u8),
output_shape, eye::Evaluate,
diagonal_index); outputs[0].get_element_type(),
outputs[0],
output_shape,
diagonal_index);
} }
} // namespace v9 } // namespace v9
} // namespace op } // namespace op

View File

@ -135,10 +135,15 @@ bool FakeConvert::evaluate(ov::TensorVector& outputs, const ov::TensorVector& in
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32>::apply<fake_convert_details::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v13_FakeConvert_evaluate,
outputs, OV_PP_ET_LIST(bf16, f16, f32),
inputs, fake_convert_details::Evaluate,
get_destination_type()); inputs[0].get_element_type(),
outputs,
inputs,
get_destination_type());
return true;
} }
} // namespace v13 } // namespace v13
} // namespace op } // namespace op

View File

@ -113,20 +113,23 @@ bool FakeQuantize::evaluate(TensorVector& outputs, const TensorVector& inputs) c
outputs[0].set_shape(shape0); outputs[0].set_shape(shape0);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<fake_quantize::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_FakeQuantize_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
inputs[1], fake_quantize::Evaluate,
inputs[2], inputs[0].get_element_type(),
inputs[3], inputs[0],
inputs[4], inputs[1],
outputs[0], inputs[2],
shape0, inputs[3],
inputs[1].get_shape(), inputs[4],
inputs[2].get_shape(), outputs[0],
inputs[3].get_shape(), shape0,
inputs[4].get_shape(), inputs[1].get_shape(),
get_levels(), inputs[2].get_shape(),
get_auto_broadcast()); inputs[3].get_shape(),
inputs[4].get_shape(),
get_levels(),
get_auto_broadcast());
} }
bool FakeQuantize::has_evaluate() const { bool FakeQuantize::has_evaluate() const {

View File

@ -44,11 +44,13 @@ bool Floor::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<floor::Evaluate>( return IF_TYPE_OF(v0_Floor_evaluate,
inputs[0].get_element_type(), OV_PP_ET_LIST(f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
inputs[0], floor::Evaluate,
outputs[0], inputs[0].get_element_type(),
shape_size(in_shape)); inputs[0],
outputs[0],
shape_size(in_shape));
} }
bool Floor::has_evaluate() const { bool Floor::has_evaluate() const {

View File

@ -48,14 +48,16 @@ bool FloorMod::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i8, i32, i64, u8, u32, u64>::apply<floor_mod::Evaluate>( return IF_TYPE_OF(v1_FloorMod_evaluate,
inputs[0].get_element_type(), OV_PP_ET_LIST(bf16, f16, f32, i8, i32, i64, u8, u32, u64),
inputs[0], floor_mod::Evaluate,
inputs[1], inputs[0].get_element_type(),
outputs[0], inputs[0],
inputs[0].get_shape(), inputs[1],
inputs[1].get_shape(), outputs[0],
get_autob()); inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool FloorMod::has_evaluate() const { bool FloorMod::has_evaluate() const {

View File

@ -104,11 +104,14 @@ bool Gelu::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
const auto count = shape_size(input_shape); const auto count = shape_size(input_shape);
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32>::apply<gelu::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v7_Gelu_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32),
outputs[0], gelu::Evaluate,
m_approximation_mode, inputs[0].get_element_type(),
count); inputs[0],
outputs[0],
m_approximation_mode,
count);
} }
bool Gelu::has_evaluate() const { bool Gelu::has_evaluate() const {

View File

@ -53,13 +53,16 @@ bool Greater::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<greater::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Greater_evaluate,
inputs[0], OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
inputs[1], greater::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Greater::has_evaluate() const { bool Greater::has_evaluate() const {

View File

@ -53,13 +53,16 @@ bool GreaterEqual::evaluate(TensorVector& outputs, const TensorVector& inputs) c
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<greater_equal::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_GreaterEqual_evaluate,
inputs[0], OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
inputs[1], greater_equal::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool GreaterEqual::has_evaluate() const { bool GreaterEqual::has_evaluate() const {

View File

@ -25,13 +25,16 @@ struct Evaluate : element::NoAction<bool> {
const Shape& grid_shape, const Shape& grid_shape,
const GridSample::Attributes& attributes) { const GridSample::Attributes& attributes) {
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f32>::apply<EvalByGridType>(grid.get_element_type(), return IF_TYPE_OF(eval_by_grid_type,
output.data<T>(), OV_PP_ET_LIST(f32),
data.data<const T>(), EvalByGridType,
grid, grid.get_element_type(),
data_shape, output.data<T>(),
grid_shape, data.data<const T>(),
attributes); grid,
data_shape,
grid_shape,
attributes);
} }
private: private:
@ -100,13 +103,16 @@ bool GridSample::evaluate(TensorVector& outputs, const TensorVector& inputs) con
outputs[0].set_shape(out_shape); outputs[0].set_shape(out_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f32>::apply<Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v9_GridSample_evaluate,
outputs[0], OV_PP_ET_LIST(f32),
inputs[0], Evaluate,
inputs[1], inputs[0].get_element_type(),
inputs[0].get_shape(), outputs[0],
inputs[1].get_shape(), inputs[0],
m_attributes); inputs[1],
inputs[0].get_shape(),
inputs[1].get_shape(),
m_attributes);
} }
bool GridSample::has_evaluate() const { bool GridSample::has_evaluate() const {

View File

@ -42,11 +42,15 @@ bool HSigmoid::evaluate(TensorVector& outputs, const TensorVector& inputs) const
const auto& input_shape = inputs[0].get_shape(); const auto& input_shape = inputs[0].get_shape();
const auto count = shape_size(input_shape); const auto count = shape_size(input_shape);
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32>::apply<hsigmoid::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v5_HSigmoid_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32),
outputs[0], hsigmoid::Evaluate,
count); inputs[0].get_element_type(),
inputs[0],
outputs[0],
count);
} }
bool HSigmoid::has_evaluate() const { bool HSigmoid::has_evaluate() const {

View File

@ -43,10 +43,13 @@ bool HSwish::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
const auto count = shape_size(input_shape); const auto count = shape_size(input_shape);
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32>::apply<hswish::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v4_HSwish_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32),
outputs[0], hswish::Evaluate,
count); inputs[0].get_element_type(),
inputs[0],
outputs[0],
count);
} }
bool HSwish::has_evaluate() const { bool HSwish::has_evaluate() const {

View File

@ -52,13 +52,16 @@ bool Less::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<less::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Less_evaluate,
inputs[0], OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
inputs[1], less::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Less::has_evaluate() const { bool Less::has_evaluate() const {

View File

@ -53,13 +53,16 @@ bool LessEqual::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<less_equal::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_LessEqual_evaluate,
inputs[0], OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
inputs[1], less_equal::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool LessEqual::has_evaluate() const { bool LessEqual::has_evaluate() const {

View File

@ -42,10 +42,13 @@ bool Log::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
const auto count = shape_size(input_shape); const auto count = shape_size(input_shape);
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<log::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Log_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], log::Evaluate,
count); inputs[0].get_element_type(),
inputs[0],
outputs[0],
count);
} }
bool Log::has_evaluate() const { bool Log::has_evaluate() const {

View File

@ -51,11 +51,13 @@ bool LogicalNot::evaluate(TensorVector& outputs, const TensorVector& inputs) con
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, i32, i64, u32, u64, f16, f32>::apply<logical_not::Evaluate>( return IF_TYPE_OF(v1_LogicalNot_evaluate,
inputs[0].get_element_type(), OV_PP_ET_LIST(boolean, i32, i64, u32, u64, f16, f32),
inputs[0], logical_not::Evaluate,
outputs[0], inputs[0].get_element_type(),
shape_size(inputs[0].get_shape())); inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool LogicalNot::has_evaluate() const { bool LogicalNot::has_evaluate() const {

View File

@ -68,15 +68,18 @@ bool MatMul::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(out_shape); outputs[0].set_shape(out_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<matmul::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_MatMul_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
inputs[1], matmul::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
out_shape, outputs[0],
m_transpose_a, inputs[0].get_shape(),
m_transpose_b); inputs[1].get_shape(),
out_shape,
m_transpose_a,
m_transpose_b);
} }
bool MatMul::has_evaluate() const { bool MatMul::has_evaluate() const {

View File

@ -93,15 +93,18 @@ bool MaxPool::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(output_shape.get_shape()); outputs[0].set_shape(output_shape.get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<maxpool::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_MaxPool_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], maxpool::Evaluate,
inputs[0].get_shape(), inputs[0].get_element_type(),
outputs[0].get_shape(), inputs[0],
get_kernel(), outputs[0],
get_strides(), inputs[0].get_shape(),
get_pads_begin(), outputs[0].get_shape(),
get_pads_end()); get_kernel(),
get_strides(),
get_pads_begin(),
get_pads_end());
} }
bool MaxPool::has_evaluate() const { bool MaxPool::has_evaluate() const {
@ -208,18 +211,21 @@ struct Evaluate : element::NoAction<bool> {
const Shape& pads_end, const Shape& pads_end,
const int64_t axis) { const int64_t axis) {
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64>::apply<EvalByIdxType>(out_indices.get_element_type(), return IF_TYPE_OF(maxpool_eval_by_idx_type,
in.data<const T>(), OV_PP_ET_LIST(i32, i64),
out_values.data<T>(), EvalByIdxType,
out_indices, out_indices.get_element_type(),
in_shape, in.data<const T>(),
out_shape, out_values.data<T>(),
kernel, out_indices,
strides, in_shape,
dilations, out_shape,
pads_begin, kernel,
pads_end, strides,
axis); dilations,
pads_begin,
pads_end,
axis);
} }
private: private:
@ -265,18 +271,21 @@ bool MaxPool::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(output_shape.get_shape()); outputs[0].set_shape(output_shape.get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i8, i32, i64, u8, u32, u64>::apply<maxpool::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v8_MaxPool_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i8, i32, i64, u8, u32, u64),
outputs[0], maxpool::Evaluate,
outputs[1], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
outputs[0].get_shape(), outputs[0],
get_kernel(), outputs[1],
get_strides(), inputs[0].get_shape(),
get_dilations(), outputs[0].get_shape(),
get_pads_begin(), get_kernel(),
get_pads_end(), get_strides(),
get_axis()); get_dilations(),
get_pads_begin(),
get_pads_end(),
get_axis());
} }
bool MaxPool::has_evaluate() const { bool MaxPool::has_evaluate() const {

View File

@ -48,13 +48,16 @@ bool Maximum::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<maximum::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Maximum_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
inputs[1], maximum::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Maximum::has_evaluate() const { bool Maximum::has_evaluate() const {

View File

@ -49,13 +49,16 @@ bool Minimum::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u8, u16, u32, u64>::apply<minimum::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Minimum_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u8, u16, u32, u64),
inputs[1], minimum::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Minimum::has_evaluate() const { bool Minimum::has_evaluate() const {

View File

@ -58,10 +58,13 @@ bool Mish::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32>::apply<mish::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v4_Mish_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32),
outputs[0], mish::Evaluate,
shape_size(in_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(in_shape));
} }
bool Mish::has_evaluate() const { bool Mish::has_evaluate() const {

View File

@ -244,13 +244,16 @@ bool Mod::evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) co
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i8, i16, i32, i64, u8, u16, u32, u64>::apply<mod::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Mod_evaluate,
inputs[0], OV_PP_ET_LIST(i8, i16, i32, i64, u8, u16, u32, u64),
inputs[1], mod::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Mod::evaluate_lower(TensorVector& outputs) const { bool Mod::evaluate_lower(TensorVector& outputs) const {

View File

@ -47,13 +47,16 @@ bool Multiply::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, f64, i32, i64, u32, u64>::apply<multiply::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Multiply_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, f64, i32, i64, u32, u64),
inputs[1], multiply::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Multiply::has_evaluate() const { bool Multiply::has_evaluate() const {

View File

@ -42,10 +42,13 @@ bool Negative::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i32, i64>::apply<negative::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Negative_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, i32, i64),
outputs[0], negative::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Negative::has_evaluate() const { bool Negative::has_evaluate() const {

View File

@ -26,7 +26,13 @@ struct Evaluate : public element::NoAction<bool> {
out.set_shape(out_shape); out.set_shape(out_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64>::apply<EvalByOutType>(out.get_element_type(), in_data, out, in_shape); return IF_TYPE_OF(non_zero_out_type,
OV_PP_ET_LIST(i32, i64),
EvalByOutType,
out.get_element_type(),
in_data,
out,
in_shape);
} }
private: private:
@ -114,12 +120,14 @@ bool NonZero::evaluate(TensorVector& outputs, const TensorVector& inputs) const
auto& output = outputs[0]; auto& output = outputs[0];
using namespace ov::element; using namespace ov::element;
const auto& input_shape = input.get_shape(); const auto& input_shape = input.get_shape();
return IfTypeOf<boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64>::apply<non_zero::Evaluate>( return IF_TYPE_OF(v3_NonZero_evaluate,
input.get_element_type(), OV_PP_ET_LIST(boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64),
input, non_zero::Evaluate,
input_shape, input.get_element_type(),
input_shape.size(), input,
output); input_shape,
input_shape.size(),
output);
} }
bool NonZero::has_evaluate() const { bool NonZero::has_evaluate() const {

View File

@ -51,13 +51,16 @@ bool NotEqual::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<not_equal::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_NotEqual_evaluate,
inputs[0], OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
inputs[1], not_equal::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool NotEqual::has_evaluate() const { bool NotEqual::has_evaluate() const {

View File

@ -118,15 +118,18 @@ bool OneHot::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
auto& output = outputs[0]; auto& output = outputs[0];
output.set_shape(output_shape); output.set_shape(output_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64>::apply<one_hot::Evaluate>(indices.get_element_type(), return IF_TYPE_OF(v1_OneHot_evaluate,
indices, OV_PP_ET_LIST(i32, i64),
indices_shape, one_hot::Evaluate,
static_cast<char*>(output.data()), indices.get_element_type(),
output.get_element_type().size(), indices,
output.get_shape()[axis], indices_shape,
on_value, static_cast<char*>(output.data()),
off_value, output.get_element_type().size(),
axis); output.get_shape()[axis],
on_value,
off_value,
axis);
} }
bool OneHot::has_evaluate() const { bool OneHot::has_evaluate() const {

View File

@ -49,13 +49,16 @@ bool Power::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
out.set_shape(infer_broadcast_shape(this, inputs)); out.set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i32, i64, u32, u64>::apply<power::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Power_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, i32, i64, u32, u64),
inputs[1], power::Evaluate,
out, inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); out,
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Power::has_evaluate() const { bool Power::has_evaluate() const {

View File

@ -55,12 +55,15 @@ bool PRelu::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
out.set_shape(arg_shape); out.set_shape(arg_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i8>::apply<prelu::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_PRelu_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, i8),
inputs[1], prelu::Evaluate,
out, inputs[0].get_element_type(),
arg_shape, inputs[0],
inputs[1].get_shape()); inputs[1],
out,
arg_shape,
inputs[1].get_shape());
} }
bool PRelu::has_evaluate() const { bool PRelu::has_evaluate() const {

View File

@ -119,11 +119,14 @@ bool Range::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
const auto step = get_tensor_data_as<double>(inputs[2])[0]; const auto step = get_tensor_data_as<double>(inputs[2])[0];
using namespace ov::element; using namespace ov::element;
return IfTypeOf<RANGE_ET_LIST>::apply<range::Evaluate>(out.get_element_type(), return IF_TYPE_OF(v4_Range_evaluate,
start, RANGE_ET_LIST,
step, range::Evaluate,
shape_size(out_shape), out.get_element_type(),
out); start,
step,
shape_size(out_shape),
out);
} }
bool Range::has_evaluate() const { bool Range::has_evaluate() const {
@ -199,11 +202,14 @@ bool Range::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
out.set_shape(out_shape); out.set_shape(out_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<RANGE_ET_LIST>::apply<range::Evaluate>(out.get_element_type(), return IF_TYPE_OF(v0_Range_evaluate,
start, RANGE_ET_LIST,
step, range::Evaluate,
shape_size(out_shape), out.get_element_type(),
out); start,
step,
shape_size(out_shape),
out);
} }
bool Range::has_evaluate() const { bool Range::has_evaluate() const {

View File

@ -48,10 +48,13 @@ bool ReduceL1::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i32, i64>::apply<reduce_l1::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v4_ReduceL1_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, i32, i64),
outputs[0], reduce_l1::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceL1::has_evaluate() const { bool ReduceL1::has_evaluate() const {

View File

@ -47,10 +47,13 @@ bool ReduceL2::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32>::apply<reduce_l2::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v4_ReduceL2_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32),
outputs[0], reduce_l2::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceL2::has_evaluate() const { bool ReduceL2::has_evaluate() const {

View File

@ -47,10 +47,13 @@ bool ReduceLogicalAnd::evaluate(TensorVector& outputs, const TensorVector& input
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean>::apply<reduce_and::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_ReduceLogicalAnd_evaluate,
inputs[0], boolean,
outputs[0], reduce_and::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceLogicalAnd::has_evaluate() const { bool ReduceLogicalAnd::has_evaluate() const {

View File

@ -48,10 +48,13 @@ bool ReduceLogicalOr::evaluate(TensorVector& outputs, const TensorVector& inputs
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean>::apply<reduce_or::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_ReduceLogicalOr_evaluate,
inputs[0], boolean,
outputs[0], reduce_or::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceLogicalOr::has_evaluate() const { bool ReduceLogicalOr::has_evaluate() const {

View File

@ -47,10 +47,13 @@ bool ReduceMax::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i8, i32, i64, u8, u32, u64>::apply<reduce_max::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_ReduceMax_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i8, i32, i64, u8, u32, u64),
outputs[0], reduce_max::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceMax::has_evaluate() const { bool ReduceMax::has_evaluate() const {

View File

@ -45,10 +45,13 @@ bool ReduceMean::evaluate(TensorVector& outputs, const TensorVector& inputs) con
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<reduce_mean::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_ReduceMean_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], reduce_mean::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceMean::has_evaluate() const { bool ReduceMean::has_evaluate() const {

View File

@ -45,10 +45,13 @@ bool ReduceMin::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i8, i32, i64, u8, u32, u64>::apply<reduce_min::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_ReduceMin_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i8, i32, i64, u8, u32, u64),
outputs[0], reduce_min::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceMin::has_evaluate() const { bool ReduceMin::has_evaluate() const {

View File

@ -57,10 +57,13 @@ bool ReduceProd::evaluate(TensorVector& outputs, const TensorVector& inputs) con
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<reduce_prod::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_ReduceProd_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], reduce_prod::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceProd::has_evaluate() const { bool ReduceProd::has_evaluate() const {

View File

@ -45,10 +45,13 @@ bool ReduceSum::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims())); outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<reduce_sum::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_ReduceSum_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], reduce_sum::Evaluate,
reduction_axes); inputs[0].get_element_type(),
inputs[0],
outputs[0],
reduction_axes);
} }
bool ReduceSum::has_evaluate() const { bool ReduceSum::has_evaluate() const {

View File

@ -42,10 +42,13 @@ bool Relu::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<relu::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Relu_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], relu::Evaluate,
shape_size(in_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(in_shape));
} }
bool Relu::has_evaluate() const { bool Relu::has_evaluate() const {

View File

@ -59,12 +59,14 @@ bool Round::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
auto& out = outputs.front(); auto& out = outputs.front();
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, i8, i16, i32, i64, u8, u16, u32, u64, bf16, f16, f32>::apply<round::Evaluate>( return IF_TYPE_OF(v5_Round_evaluate,
arg0.get_element_type(), OV_PP_ET_LIST(boolean, i8, i16, i32, i64, u8, u16, u32, u64, bf16, f16, f32),
arg0, round::Evaluate,
out, arg0.get_element_type(),
shape_size(arg0.get_shape()), arg0,
get_mode()); out,
shape_size(arg0.get_shape()),
get_mode());
} }
bool Round::has_evaluate() const { bool Round::has_evaluate() const {

View File

@ -101,16 +101,19 @@ struct Evaluate : public element::NoAction<bool> {
) { ) {
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i8, i16, i32, i64, u8, u16, u32, u64>::apply<EvaluateByIndicesType>(indices.get_element_type(), return IF_TYPE_OF(scatter_el_update_idx_type,
data.data<const DT>(), OV_PP_ET_LIST(i8, i16, i32, i64, u8, u16, u32, u64),
indices, EvaluateByIndicesType,
updates.data<const DT>(), indices.get_element_type(),
output.data<DT>(), data.data<const DT>(),
data_shape, indices,
indices_shape, updates.data<const DT>(),
axis, output.data<DT>(),
reduction, data_shape,
use_init_value); indices_shape,
axis,
reduction,
use_init_value);
} }
private: private:
@ -156,18 +159,21 @@ bool evaluate(TensorVector& outputs,
const auto& data_shape = data.get_shape(); const auto& data_shape = data.get_shape();
const auto& indices_shape = indices.get_shape(); const auto& indices_shape = indices.get_shape();
output.set_shape(data_shape); output.set_shape(data_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, f16, f32, i16, i32, i64, u32, u64>::apply<scatter_elements_update::Evaluate>( return IF_TYPE_OF(scatter_evaluate,
data.get_element_type(), OV_PP_ET_LIST(boolean, f16, f32, i16, i32, i64, u32, u64),
data, scatter_elements_update::Evaluate,
indices, data.get_element_type(),
updates, data,
output, indices,
data_shape, updates,
indices_shape, output,
axis, data_shape,
reduction, indices_shape,
use_init_value); axis,
reduction,
use_init_value);
} }
} // namespace } // namespace
} // namespace scatter_elements_update } // namespace scatter_elements_update

View File

@ -24,14 +24,17 @@ struct Evaluate : public element::NoAction<bool> {
const Shape& indices_shape, const Shape& indices_shape,
const Shape& updates_shape) { const Shape& updates_shape) {
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64>::apply<EvaluateByIndicesType>(indices.get_element_type(), return IF_TYPE_OF(sctter_nd_eval_idx_type,
data.data<const DT>(), OV_PP_ET_LIST(i32, i64),
indices, EvaluateByIndicesType,
updates.data<const DT>(), indices.get_element_type(),
output.data<DT>(), data.data<const DT>(),
data_shape, indices,
indices_shape, updates.data<const DT>(),
updates_shape); output.data<DT>(),
data_shape,
indices_shape,
updates_shape);
} }
private: private:
@ -82,14 +85,17 @@ bool ScatterNDUpdate::evaluate(TensorVector& outputs, const TensorVector& inputs
const auto& updates_shape = updates.get_shape(); const auto& updates_shape = updates.get_shape();
output.set_shape(data_shape); output.set_shape(data_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<scatter_nd_update::Evaluate>(data.get_element_type(), return IF_TYPE_OF(v3_ScatterNDUpdate_evaluate,
data, OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
indices, scatter_nd_update::Evaluate,
updates, data.get_element_type(),
output, data,
data_shape, indices,
indices_shape, updates,
updates_shape); output,
data_shape,
indices_shape,
updates_shape);
} }
bool ScatterNDUpdate::has_evaluate() const { bool ScatterNDUpdate::has_evaluate() const {

View File

@ -44,10 +44,13 @@ bool Sigmoid::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<sigmoid::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Sigmoid_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], sigmoid::Evaluate,
shape_size(in_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(in_shape));
} }
bool Sigmoid::has_evaluate() const { bool Sigmoid::has_evaluate() const {

View File

@ -43,10 +43,13 @@ bool Sign::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<sign::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Sign_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], sign::Evaluate,
shape_size(in_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(in_shape));
} }
bool Sign::has_evaluate() const { bool Sign::has_evaluate() const {

View File

@ -47,10 +47,13 @@ bool Sin::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<sin::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Sin_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], sin::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Sin::has_evaluate() const { bool Sin::has_evaluate() const {

View File

@ -45,10 +45,13 @@ bool Sinh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<sinh::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Sinh_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], sinh::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Sinh::has_evaluate() const { bool Sinh::has_evaluate() const {

View File

@ -68,11 +68,14 @@ bool Softmax::evaluate(TensorVector& outputs, const TensorVector& inputs) const
const auto& input_shape = inputs[0].get_shape(); const auto& input_shape = inputs[0].get_shape();
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, f64>::apply<softmax::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Softmax_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, f64),
outputs[0], softmax::Evaluate,
input_shape, inputs[0].get_element_type(),
AxisSet{m_axis}); inputs[0],
outputs[0],
input_shape,
AxisSet{m_axis});
} }
bool Softmax::has_evaluate() const { bool Softmax::has_evaluate() const {
@ -140,11 +143,14 @@ bool Softmax::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, f64>::apply<softmax::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v8_Softmax_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, f64),
outputs[0], softmax::Evaluate,
input_shape, inputs[0].get_element_type(),
AxisSet{axis}); inputs[0],
outputs[0],
input_shape,
AxisSet{axis});
} }
bool Softmax::has_evaluate() const { bool Softmax::has_evaluate() const {

View File

@ -57,10 +57,13 @@ bool SoftPlus::evaluate(TensorVector& outputs, const TensorVector& inputs) const
const auto count = shape_size(input_shape); const auto count = shape_size(input_shape);
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32>::apply<softplus::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v4_SoftPlus_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32),
outputs[0], softplus::Evaluate,
count); inputs[0].get_element_type(),
inputs[0],
outputs[0],
count);
} }
bool SoftPlus::has_evaluate() const { bool SoftPlus::has_evaluate() const {

View File

@ -75,10 +75,13 @@ bool SoftSign::evaluate(TensorVector& outputs,
const auto& input_shape = inputs[0].get_shape(); const auto& input_shape = inputs[0].get_shape();
outputs[0].set_shape(input_shape); outputs[0].set_shape(input_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, f64>::apply<softsign::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v9_SoftSign_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, f64),
outputs[0], softsign::Evaluate,
shape_size(input_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(input_shape));
} }
} // namespace v9 } // namespace v9
} // namespace op } // namespace op

View File

@ -41,10 +41,13 @@ bool Sqrt::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
const auto& in_shape = inputs[0].get_shape(); const auto& in_shape = inputs[0].get_shape();
outputs[0].set_shape(in_shape); outputs[0].set_shape(in_shape);
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, f64, i32, i64, u32, u64>::apply<sqrt::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Sqrt_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, f64, i32, i64, u32, u64),
outputs[0], sqrt::Evaluate,
shape_size(in_shape)); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(in_shape));
} }
bool Sqrt::has_evaluate() const { bool Sqrt::has_evaluate() const {

View File

@ -48,13 +48,16 @@ bool Subtract::evaluate(TensorVector& outputs, const TensorVector& inputs) const
outputs[0].set_shape(infer_broadcast_shape(this, inputs)); outputs[0].set_shape(infer_broadcast_shape(this, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<bf16, f16, f32, i8, i32, i64, u8, u32, u64>::apply<subtract::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v1_Subtract_evaluate,
inputs[0], OV_PP_ET_LIST(bf16, f16, f32, i8, i32, i64, u8, u32, u64),
inputs[1], subtract::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
get_autob());
} }
bool Subtract::has_evaluate() const { bool Subtract::has_evaluate() const {

View File

@ -88,11 +88,14 @@ bool Swish::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
const auto& arg1 = inputs.size() == 2 ? inputs[1] : Tensor(); const auto& arg1 = inputs.size() == 2 ? inputs[1] : Tensor();
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32>::apply<swish::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v4_Swish_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32),
arg1, swish::Evaluate,
outputs[0], inputs[0].get_element_type(),
shape_size(inputs[0].get_shape())); inputs[0],
arg1,
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Swish::has_evaluate() const { bool Swish::has_evaluate() const {

View File

@ -45,10 +45,13 @@ bool Tan::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<tan::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Tan_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], tan::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Tan::has_evaluate() const { bool Tan::has_evaluate() const {

View File

@ -46,10 +46,13 @@ bool Tanh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
outputs[0].set_shape(inputs[0].get_shape()); outputs[0].set_shape(inputs[0].get_shape());
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<tanh::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(v0_Tanh_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], tanh::Evaluate,
shape_size(inputs[0].get_shape())); inputs[0].get_element_type(),
inputs[0],
outputs[0],
shape_size(inputs[0].get_shape()));
} }
bool Tanh::has_evaluate() const { bool Tanh::has_evaluate() const {

View File

@ -59,16 +59,19 @@ struct Evaluate : public element::NoAction<bool> {
const bool compute_max, const bool compute_max,
const TopKSortType sort) { const TopKSortType sort) {
using namespace ov::element; using namespace ov::element;
return IfTypeOf<i32, i64>::apply<EvalByIdxType>(out_indices.get_element_type(), return IF_TYPE_OF(topk_eval_by_idx_type,
in.data<const T>(), OV_PP_ET_LIST(i32, i64),
out_values.data<T>(), EvalByIdxType,
out_indices, out_indices.get_element_type(),
in.get_shape(), in.data<const T>(),
out_shape, out_values.data<T>(),
axis, out_indices,
out_shape[axis], in.get_shape(),
compute_max, out_shape,
sort); axis,
out_shape[axis],
compute_max,
sort);
} }
private: private:
@ -116,14 +119,17 @@ bool evaluate(const util::TopKBase* const node, TensorVector& outputs, const Ten
} }
using namespace ov::element; using namespace ov::element;
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<topk::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(topk_evaluate,
inputs[0], OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
outputs[0], topk::Evaluate,
outputs[1], inputs[0].get_element_type(),
output_shape, inputs[0],
axis, outputs[0],
(node->get_mode() == ov::op::TopKMode::MAX), outputs[1],
node->get_sort_type()); output_shape,
axis,
(node->get_mode() == ov::op::TopKMode::MAX),
node->get_sort_type());
} }
} // namespace } // namespace
} // namespace topk } // namespace topk

View File

@ -45,13 +45,16 @@ bool evaluate(const Node* const op, TensorVector& outputs, const TensorVector& i
outputs[0].set_shape(infer_broadcast_shape(op, inputs)); outputs[0].set_shape(infer_broadcast_shape(op, inputs));
using namespace ov::element; using namespace ov::element;
return IfTypeOf<boolean>::apply<logxor::Evaluate>(inputs[0].get_element_type(), return IF_TYPE_OF(Xor_evaluate,
inputs[0], boolean,
inputs[1], logxor::Evaluate,
outputs[0], inputs[0].get_element_type(),
inputs[0].get_shape(), inputs[0],
inputs[1].get_shape(), inputs[1],
op->get_autob()); outputs[0],
inputs[0].get_shape(),
inputs[1].get_shape(),
op->get_autob());
} }
} // namespace } // namespace
} // namespace logxor } // namespace logxor