Restore CC feature in operators evaluate (#21446)
This commit is contained in:
parent
f9d20d5aa0
commit
24209239bf
@ -42,7 +42,10 @@ bool Abs::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i32, i64, u32, u64>::apply<abs::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Abs_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i32, i64, u32, u64),
|
||||
abs::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -41,7 +41,10 @@ bool ov::op::v0::Acos::evaluate(TensorVector& outputs, const TensorVector& input
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<acos::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Acos_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
acos::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -41,7 +41,10 @@ bool ov::op::v3::Acosh::evaluate(TensorVector& outputs, const TensorVector& inpu
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<acosh::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v3_Acosh_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
acosh::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -48,7 +48,9 @@ bool Add::evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) co
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<add::Evaluate>(
|
||||
return IF_TYPE_OF(v1_Add_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
add::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
|
@ -41,7 +41,10 @@ bool Asin::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<asin::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Asin_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
asin::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -40,7 +40,10 @@ bool Asinh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<asinh::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v3_Asinh_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
asinh::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -43,7 +43,10 @@ bool Atan::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<atan::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Atan_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
atan::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -40,7 +40,10 @@ bool op::v3::Atanh::evaluate(TensorVector& outputs, const TensorVector& inputs)
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<atanh::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v3_Atanh_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
atanh::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -44,7 +44,9 @@ bool Ceiling::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<ceiling::Evaluate>(
|
||||
return IF_TYPE_OF(v0_Ceiling_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
ceiling::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
|
@ -68,7 +68,9 @@ bool Clamp::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<clamp::Evaluate>(
|
||||
return IF_TYPE_OF(v0_Clamp_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
clamp::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
|
@ -47,7 +47,10 @@ bool Cos::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<cos::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Cos_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
cos::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -47,7 +47,10 @@ bool Cosh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<cosh::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Cosh_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
cosh::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -35,7 +35,10 @@ bool evaluate(TensorVector& outputs, const TensorVector& inputs, const bool excl
|
||||
const auto axis = ov::get_tensor_data_as<int64_t>(inputs[1]).front();
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f32>::apply<cumsum::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(CumSum_evaluate,
|
||||
f32,
|
||||
cumsum::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
axis,
|
||||
|
@ -242,7 +242,10 @@ bool Divide::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, bf16, f32>::apply<divide::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Divide_evaluate,
|
||||
OV_PP_ET_LIST(f16, bf16, f32, i32, i64, u32, u64),
|
||||
divide::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -101,7 +101,9 @@ bool Equal::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
|
||||
outputs[0].set_shape(ov::op::infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64>::apply<equal::Evaluate>(
|
||||
return IF_TYPE_OF(v1_Equal_evaluate,
|
||||
OV_PP_ET_LIST(boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
equal::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
|
@ -43,10 +43,13 @@ bool Erf::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<erf::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Erf_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
erf::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(in_shape));
|
||||
shape_size(inputs[0].get_shape()));
|
||||
}
|
||||
|
||||
bool Erf::has_evaluate() const {
|
||||
|
@ -44,7 +44,10 @@ bool Exp::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<exp::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Exp_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
exp::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(in_shape));
|
||||
|
@ -123,7 +123,10 @@ bool Eye::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
|
||||
outputs[0].set_shape(output_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, f64, i8, i32, i64, u8>::apply<eye::Evaluate>(outputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v9_Eye_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, f64, i8, i32, i64, u8),
|
||||
eye::Evaluate,
|
||||
outputs[0].get_element_type(),
|
||||
outputs[0],
|
||||
output_shape,
|
||||
diagonal_index);
|
||||
|
@ -135,10 +135,15 @@ bool FakeConvert::evaluate(ov::TensorVector& outputs, const ov::TensorVector& in
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32>::apply<fake_convert_details::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v13_FakeConvert_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32),
|
||||
fake_convert_details::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
outputs,
|
||||
inputs,
|
||||
get_destination_type());
|
||||
|
||||
return true;
|
||||
}
|
||||
} // namespace v13
|
||||
} // namespace op
|
||||
|
@ -113,7 +113,10 @@ bool FakeQuantize::evaluate(TensorVector& outputs, const TensorVector& inputs) c
|
||||
outputs[0].set_shape(shape0);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<fake_quantize::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_FakeQuantize_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
fake_quantize::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
inputs[2],
|
||||
|
@ -44,7 +44,9 @@ bool Floor::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i8, i16, i32, i64, u8, u16, u32, u64>::apply<floor::Evaluate>(
|
||||
return IF_TYPE_OF(v0_Floor_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
floor::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
|
@ -48,7 +48,9 @@ bool FloorMod::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i8, i32, i64, u8, u32, u64>::apply<floor_mod::Evaluate>(
|
||||
return IF_TYPE_OF(v1_FloorMod_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i8, i32, i64, u8, u32, u64),
|
||||
floor_mod::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
|
@ -104,7 +104,10 @@ bool Gelu::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
const auto count = shape_size(input_shape);
|
||||
outputs[0].set_shape(input_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32>::apply<gelu::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v7_Gelu_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32),
|
||||
gelu::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
m_approximation_mode,
|
||||
|
@ -53,7 +53,10 @@ bool Greater::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<greater::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Greater_evaluate,
|
||||
OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
|
||||
greater::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -53,7 +53,10 @@ bool GreaterEqual::evaluate(TensorVector& outputs, const TensorVector& inputs) c
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<greater_equal::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_GreaterEqual_evaluate,
|
||||
OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
|
||||
greater_equal::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -25,7 +25,10 @@ struct Evaluate : element::NoAction<bool> {
|
||||
const Shape& grid_shape,
|
||||
const GridSample::Attributes& attributes) {
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f32>::apply<EvalByGridType>(grid.get_element_type(),
|
||||
return IF_TYPE_OF(eval_by_grid_type,
|
||||
OV_PP_ET_LIST(f32),
|
||||
EvalByGridType,
|
||||
grid.get_element_type(),
|
||||
output.data<T>(),
|
||||
data.data<const T>(),
|
||||
grid,
|
||||
@ -100,7 +103,10 @@ bool GridSample::evaluate(TensorVector& outputs, const TensorVector& inputs) con
|
||||
outputs[0].set_shape(out_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f32>::apply<Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v9_GridSample_evaluate,
|
||||
OV_PP_ET_LIST(f32),
|
||||
Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
outputs[0],
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
|
@ -42,8 +42,12 @@ bool HSigmoid::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
const auto& input_shape = inputs[0].get_shape();
|
||||
const auto count = shape_size(input_shape);
|
||||
outputs[0].set_shape(input_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32>::apply<hsigmoid::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v5_HSigmoid_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32),
|
||||
hsigmoid::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
count);
|
||||
|
@ -43,7 +43,10 @@ bool HSwish::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
const auto count = shape_size(input_shape);
|
||||
outputs[0].set_shape(input_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32>::apply<hswish::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v4_HSwish_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32),
|
||||
hswish::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
count);
|
||||
|
@ -52,7 +52,10 @@ bool Less::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<less::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Less_evaluate,
|
||||
OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
|
||||
less::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -53,7 +53,10 @@ bool LessEqual::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<less_equal::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_LessEqual_evaluate,
|
||||
OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
|
||||
less_equal::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -42,7 +42,10 @@ bool Log::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
const auto count = shape_size(input_shape);
|
||||
outputs[0].set_shape(input_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<log::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Log_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
log::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
count);
|
||||
|
@ -51,7 +51,9 @@ bool LogicalNot::evaluate(TensorVector& outputs, const TensorVector& inputs) con
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, i32, i64, u32, u64, f16, f32>::apply<logical_not::Evaluate>(
|
||||
return IF_TYPE_OF(v1_LogicalNot_evaluate,
|
||||
OV_PP_ET_LIST(boolean, i32, i64, u32, u64, f16, f32),
|
||||
logical_not::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
|
@ -68,7 +68,10 @@ bool MatMul::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(out_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<matmul::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_MatMul_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
matmul::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -93,7 +93,10 @@ bool MaxPool::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(output_shape.get_shape());
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<maxpool::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_MaxPool_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
maxpool::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
inputs[0].get_shape(),
|
||||
@ -208,7 +211,10 @@ struct Evaluate : element::NoAction<bool> {
|
||||
const Shape& pads_end,
|
||||
const int64_t axis) {
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64>::apply<EvalByIdxType>(out_indices.get_element_type(),
|
||||
return IF_TYPE_OF(maxpool_eval_by_idx_type,
|
||||
OV_PP_ET_LIST(i32, i64),
|
||||
EvalByIdxType,
|
||||
out_indices.get_element_type(),
|
||||
in.data<const T>(),
|
||||
out_values.data<T>(),
|
||||
out_indices,
|
||||
@ -265,7 +271,10 @@ bool MaxPool::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(output_shape.get_shape());
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i8, i32, i64, u8, u32, u64>::apply<maxpool::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v8_MaxPool_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i8, i32, i64, u8, u32, u64),
|
||||
maxpool::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
|
@ -48,7 +48,10 @@ bool Maximum::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<maximum::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Maximum_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
maximum::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -49,7 +49,10 @@ bool Minimum::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u8, u16, u32, u64>::apply<minimum::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Minimum_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u8, u16, u32, u64),
|
||||
minimum::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -58,7 +58,10 @@ bool Mish::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32>::apply<mish::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v4_Mish_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32),
|
||||
mish::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(in_shape));
|
||||
|
@ -244,7 +244,10 @@ bool Mod::evaluate(ov::TensorVector& outputs, const ov::TensorVector& inputs) co
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i8, i16, i32, i64, u8, u16, u32, u64>::apply<mod::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Mod_evaluate,
|
||||
OV_PP_ET_LIST(i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
mod::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -47,7 +47,10 @@ bool Multiply::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, f64, i32, i64, u32, u64>::apply<multiply::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Multiply_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, f64, i32, i64, u32, u64),
|
||||
multiply::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -42,7 +42,10 @@ bool Negative::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i32, i64>::apply<negative::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Negative_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i32, i64),
|
||||
negative::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -26,7 +26,13 @@ struct Evaluate : public element::NoAction<bool> {
|
||||
out.set_shape(out_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64>::apply<EvalByOutType>(out.get_element_type(), in_data, out, in_shape);
|
||||
return IF_TYPE_OF(non_zero_out_type,
|
||||
OV_PP_ET_LIST(i32, i64),
|
||||
EvalByOutType,
|
||||
out.get_element_type(),
|
||||
in_data,
|
||||
out,
|
||||
in_shape);
|
||||
}
|
||||
|
||||
private:
|
||||
@ -114,7 +120,9 @@ bool NonZero::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
auto& output = outputs[0];
|
||||
using namespace ov::element;
|
||||
const auto& input_shape = input.get_shape();
|
||||
return IfTypeOf<boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64>::apply<non_zero::Evaluate>(
|
||||
return IF_TYPE_OF(v3_NonZero_evaluate,
|
||||
OV_PP_ET_LIST(boolean, bf16, f16, f32, f64, i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
non_zero::Evaluate,
|
||||
input.get_element_type(),
|
||||
input,
|
||||
input_shape,
|
||||
|
@ -51,7 +51,10 @@ bool NotEqual::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<not_equal::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_NotEqual_evaluate,
|
||||
OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
|
||||
not_equal::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -118,7 +118,10 @@ bool OneHot::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
auto& output = outputs[0];
|
||||
output.set_shape(output_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64>::apply<one_hot::Evaluate>(indices.get_element_type(),
|
||||
return IF_TYPE_OF(v1_OneHot_evaluate,
|
||||
OV_PP_ET_LIST(i32, i64),
|
||||
one_hot::Evaluate,
|
||||
indices.get_element_type(),
|
||||
indices,
|
||||
indices_shape,
|
||||
static_cast<char*>(output.data()),
|
||||
|
@ -49,7 +49,10 @@ bool Power::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
out.set_shape(infer_broadcast_shape(this, inputs));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i32, i64, u32, u64>::apply<power::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Power_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i32, i64, u32, u64),
|
||||
power::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
out,
|
||||
|
@ -55,7 +55,10 @@ bool PRelu::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
out.set_shape(arg_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i8>::apply<prelu::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_PRelu_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i8),
|
||||
prelu::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
out,
|
||||
|
@ -119,7 +119,10 @@ bool Range::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
const auto step = get_tensor_data_as<double>(inputs[2])[0];
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<RANGE_ET_LIST>::apply<range::Evaluate>(out.get_element_type(),
|
||||
return IF_TYPE_OF(v4_Range_evaluate,
|
||||
RANGE_ET_LIST,
|
||||
range::Evaluate,
|
||||
out.get_element_type(),
|
||||
start,
|
||||
step,
|
||||
shape_size(out_shape),
|
||||
@ -199,7 +202,10 @@ bool Range::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
out.set_shape(out_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<RANGE_ET_LIST>::apply<range::Evaluate>(out.get_element_type(),
|
||||
return IF_TYPE_OF(v0_Range_evaluate,
|
||||
RANGE_ET_LIST,
|
||||
range::Evaluate,
|
||||
out.get_element_type(),
|
||||
start,
|
||||
step,
|
||||
shape_size(out_shape),
|
||||
|
@ -48,7 +48,10 @@ bool ReduceL1::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i32, i64>::apply<reduce_l1::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v4_ReduceL1_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i32, i64),
|
||||
reduce_l1::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -47,7 +47,10 @@ bool ReduceL2::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32>::apply<reduce_l2::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v4_ReduceL2_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32),
|
||||
reduce_l2::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -47,7 +47,10 @@ bool ReduceLogicalAnd::evaluate(TensorVector& outputs, const TensorVector& input
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean>::apply<reduce_and::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_ReduceLogicalAnd_evaluate,
|
||||
boolean,
|
||||
reduce_and::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -48,7 +48,10 @@ bool ReduceLogicalOr::evaluate(TensorVector& outputs, const TensorVector& inputs
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean>::apply<reduce_or::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_ReduceLogicalOr_evaluate,
|
||||
boolean,
|
||||
reduce_or::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -47,7 +47,10 @@ bool ReduceMax::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i8, i32, i64, u8, u32, u64>::apply<reduce_max::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_ReduceMax_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i8, i32, i64, u8, u32, u64),
|
||||
reduce_max::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -45,7 +45,10 @@ bool ReduceMean::evaluate(TensorVector& outputs, const TensorVector& inputs) con
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<reduce_mean::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_ReduceMean_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
reduce_mean::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -45,7 +45,10 @@ bool ReduceMin::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i8, i32, i64, u8, u32, u64>::apply<reduce_min::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_ReduceMin_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i8, i32, i64, u8, u32, u64),
|
||||
reduce_min::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -57,7 +57,10 @@ bool ReduceProd::evaluate(TensorVector& outputs, const TensorVector& inputs) con
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<reduce_prod::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_ReduceProd_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
reduce_prod::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -45,7 +45,10 @@ bool ReduceSum::evaluate(TensorVector& outputs, const TensorVector& inputs) cons
|
||||
outputs[0].set_shape(ov::util::reduce(inputs[0].get_shape(), reduction_axes, get_keep_dims()));
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<reduce_sum::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_ReduceSum_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
reduce_sum::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
reduction_axes);
|
||||
|
@ -42,7 +42,10 @@ bool Relu::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<relu::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Relu_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
relu::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(in_shape));
|
||||
|
@ -59,7 +59,9 @@ bool Round::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
auto& out = outputs.front();
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, i8, i16, i32, i64, u8, u16, u32, u64, bf16, f16, f32>::apply<round::Evaluate>(
|
||||
return IF_TYPE_OF(v5_Round_evaluate,
|
||||
OV_PP_ET_LIST(boolean, i8, i16, i32, i64, u8, u16, u32, u64, bf16, f16, f32),
|
||||
round::Evaluate,
|
||||
arg0.get_element_type(),
|
||||
arg0,
|
||||
out,
|
||||
|
@ -101,7 +101,10 @@ struct Evaluate : public element::NoAction<bool> {
|
||||
|
||||
) {
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i8, i16, i32, i64, u8, u16, u32, u64>::apply<EvaluateByIndicesType>(indices.get_element_type(),
|
||||
return IF_TYPE_OF(scatter_el_update_idx_type,
|
||||
OV_PP_ET_LIST(i8, i16, i32, i64, u8, u16, u32, u64),
|
||||
EvaluateByIndicesType,
|
||||
indices.get_element_type(),
|
||||
data.data<const DT>(),
|
||||
indices,
|
||||
updates.data<const DT>(),
|
||||
@ -156,8 +159,11 @@ bool evaluate(TensorVector& outputs,
|
||||
const auto& data_shape = data.get_shape();
|
||||
const auto& indices_shape = indices.get_shape();
|
||||
output.set_shape(data_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, f16, f32, i16, i32, i64, u32, u64>::apply<scatter_elements_update::Evaluate>(
|
||||
return IF_TYPE_OF(scatter_evaluate,
|
||||
OV_PP_ET_LIST(boolean, f16, f32, i16, i32, i64, u32, u64),
|
||||
scatter_elements_update::Evaluate,
|
||||
data.get_element_type(),
|
||||
data,
|
||||
indices,
|
||||
|
@ -24,7 +24,10 @@ struct Evaluate : public element::NoAction<bool> {
|
||||
const Shape& indices_shape,
|
||||
const Shape& updates_shape) {
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64>::apply<EvaluateByIndicesType>(indices.get_element_type(),
|
||||
return IF_TYPE_OF(sctter_nd_eval_idx_type,
|
||||
OV_PP_ET_LIST(i32, i64),
|
||||
EvaluateByIndicesType,
|
||||
indices.get_element_type(),
|
||||
data.data<const DT>(),
|
||||
indices,
|
||||
updates.data<const DT>(),
|
||||
@ -82,7 +85,10 @@ bool ScatterNDUpdate::evaluate(TensorVector& outputs, const TensorVector& inputs
|
||||
const auto& updates_shape = updates.get_shape();
|
||||
output.set_shape(data_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean, f16, f32, i32, i64, u32, u64>::apply<scatter_nd_update::Evaluate>(data.get_element_type(),
|
||||
return IF_TYPE_OF(v3_ScatterNDUpdate_evaluate,
|
||||
OV_PP_ET_LIST(boolean, f16, f32, i32, i64, u32, u64),
|
||||
scatter_nd_update::Evaluate,
|
||||
data.get_element_type(),
|
||||
data,
|
||||
indices,
|
||||
updates,
|
||||
|
@ -44,7 +44,10 @@ bool Sigmoid::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<sigmoid::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Sigmoid_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
sigmoid::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(in_shape));
|
||||
|
@ -43,7 +43,10 @@ bool Sign::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(in_shape);
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<sign::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Sign_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
sign::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(in_shape));
|
||||
|
@ -47,7 +47,10 @@ bool Sin::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<sin::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Sin_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
sin::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -45,7 +45,10 @@ bool Sinh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<sinh::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Sinh_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
sinh::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -68,7 +68,10 @@ bool Softmax::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
const auto& input_shape = inputs[0].get_shape();
|
||||
outputs[0].set_shape(input_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, f64>::apply<softmax::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Softmax_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, f64),
|
||||
softmax::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
input_shape,
|
||||
@ -140,7 +143,10 @@ bool Softmax::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(input_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, f64>::apply<softmax::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v8_Softmax_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, f64),
|
||||
softmax::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
input_shape,
|
||||
|
@ -57,7 +57,10 @@ bool SoftPlus::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
const auto count = shape_size(input_shape);
|
||||
outputs[0].set_shape(input_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32>::apply<softplus::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v4_SoftPlus_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32),
|
||||
softplus::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
count);
|
||||
|
@ -75,7 +75,10 @@ bool SoftSign::evaluate(TensorVector& outputs,
|
||||
const auto& input_shape = inputs[0].get_shape();
|
||||
outputs[0].set_shape(input_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, f64>::apply<softsign::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v9_SoftSign_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, f64),
|
||||
softsign::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(input_shape));
|
||||
|
@ -41,7 +41,10 @@ bool Sqrt::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
const auto& in_shape = inputs[0].get_shape();
|
||||
outputs[0].set_shape(in_shape);
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, f64, i32, i64, u32, u64>::apply<sqrt::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Sqrt_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, f64, i32, i64, u32, u64),
|
||||
sqrt::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(in_shape));
|
||||
|
@ -48,7 +48,10 @@ bool Subtract::evaluate(TensorVector& outputs, const TensorVector& inputs) const
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(this, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<bf16, f16, f32, i8, i32, i64, u8, u32, u64>::apply<subtract::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v1_Subtract_evaluate,
|
||||
OV_PP_ET_LIST(bf16, f16, f32, i8, i32, i64, u8, u32, u64),
|
||||
subtract::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
@ -88,7 +88,10 @@ bool Swish::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
const auto& arg1 = inputs.size() == 2 ? inputs[1] : Tensor();
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32>::apply<swish::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v4_Swish_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32),
|
||||
swish::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
arg1,
|
||||
outputs[0],
|
||||
|
@ -45,7 +45,10 @@ bool Tan::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<tan::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Tan_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
tan::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -46,7 +46,10 @@ bool Tanh::evaluate(TensorVector& outputs, const TensorVector& inputs) const {
|
||||
outputs[0].set_shape(inputs[0].get_shape());
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64, u32, u64, f16, f32>::apply<tanh::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(v0_Tanh_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
tanh::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
shape_size(inputs[0].get_shape()));
|
||||
|
@ -59,7 +59,10 @@ struct Evaluate : public element::NoAction<bool> {
|
||||
const bool compute_max,
|
||||
const TopKSortType sort) {
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<i32, i64>::apply<EvalByIdxType>(out_indices.get_element_type(),
|
||||
return IF_TYPE_OF(topk_eval_by_idx_type,
|
||||
OV_PP_ET_LIST(i32, i64),
|
||||
EvalByIdxType,
|
||||
out_indices.get_element_type(),
|
||||
in.data<const T>(),
|
||||
out_values.data<T>(),
|
||||
out_indices,
|
||||
@ -116,7 +119,10 @@ bool evaluate(const util::TopKBase* const node, TensorVector& outputs, const Ten
|
||||
}
|
||||
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<f16, f32, i32, i64, u32, u64>::apply<topk::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(topk_evaluate,
|
||||
OV_PP_ET_LIST(f16, f32, i32, i64, u32, u64),
|
||||
topk::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
outputs[0],
|
||||
outputs[1],
|
||||
|
@ -45,7 +45,10 @@ bool evaluate(const Node* const op, TensorVector& outputs, const TensorVector& i
|
||||
|
||||
outputs[0].set_shape(infer_broadcast_shape(op, inputs));
|
||||
using namespace ov::element;
|
||||
return IfTypeOf<boolean>::apply<logxor::Evaluate>(inputs[0].get_element_type(),
|
||||
return IF_TYPE_OF(Xor_evaluate,
|
||||
boolean,
|
||||
logxor::Evaluate,
|
||||
inputs[0].get_element_type(),
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
outputs[0],
|
||||
|
Loading…
Reference in New Issue
Block a user