[PT FE]: support aten::einsum (#15844)

This commit is contained in:
Ekaterina Aidova 2023-02-23 11:39:28 +04:00 committed by GitHub
parent a9efe5bd8d
commit 288a750bc6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 197 additions and 0 deletions

View File

@ -19,6 +19,7 @@
#include "transforms/aten_cat_replacer.hpp"
#include "transforms/aten_getitem_replacer.hpp"
#include "transforms/aten_stack_list_construct_replacer.hpp"
#include "transforms/einsum_list_construct.hpp"
#include "transforms/listconstruct_replacer.hpp"
#include "transforms/min_max_prim_list_construct_replacer.hpp"
#include "transforms/prim_list_construct_pad.hpp"
@ -97,6 +98,7 @@ void FrontEnd::normalize(const std::shared_ptr<ov::Model>& model) const {
manager.register_pass<ov::frontend::pytorch::pass::AtenGetItemReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::ListConstructReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::PrimListConstructPadReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::AtenEinsumListConstructReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::MinMaxPrimListConstructReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::DecomposeListTupleResults>();
manager.register_pass<ov::pass::RemoveMultiSubGraphOpDanglingParams>();

View File

@ -0,0 +1,68 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "einsum_list_construct.hpp"
#include "openvino/core/rt_info.hpp"
#include "openvino/op/einsum.hpp"
#include "openvino/op/util/framework_node.hpp"
#include "openvino/pass/pattern/matcher.hpp"
#include "openvino/pass/pattern/op/wrap_type.hpp"
#include "utils.hpp"
using namespace ov::pass::pattern;
namespace ov {
namespace frontend {
namespace pytorch {
namespace pass {
using namespace ov::pass;
using namespace ov::op;
AtenEinsumListConstructReplacer::AtenEinsumListConstructReplacer() {
auto einsum_op = pattern::wrap_type<ov::op::util::FrameworkNode>();
ov::matcher_pass_callback callback = [](pattern::Matcher& m) {
auto einsum_op = cast_fw_node(m.get_match_root(), "aten::einsum");
if (!einsum_op) {
return false;
}
auto equation_input = einsum_op->input_value(0).get_node_shared_ptr();
auto tensor_list = einsum_op->input_value(1).get_node_shared_ptr();
std::string equation;
// equation should be string constant
if (const auto& fw_node_mode = cast_fw_node(equation_input, "prim::Constant")) {
const auto& attrs = fw_node_mode->get_attrs();
if (attrs.find("string_value") != attrs.end()) {
equation = attrs.at("string_value");
}
} else {
return false;
}
// Check if ListConstruct is an input
if (auto list_construct_node = cast_fw_node(tensor_list, "prim::ListConstruct")) {
const auto& list_inputs = list_construct_node->input_values();
OutputVector node_vector;
// Iterate over values in ListConstruct
for (const auto& list_input : list_inputs) {
node_vector.push_back(list_input);
}
auto einsum = std::make_shared<v7::Einsum>(node_vector, equation);
copy_runtime_info({einsum_op, equation_input, tensor_list}, einsum);
replace_node(einsum_op, einsum);
return true;
}
return false;
};
auto m =
std::make_shared<pattern::Matcher>(einsum_op, "ov::frontend::pytorch::pass::AtenEinsumListConstructReplacer");
this->register_matcher(m, callback);
};
} // namespace pass
} // namespace pytorch
} // namespace frontend
} // namespace ov

View File

@ -0,0 +1,24 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include "openvino/pass/graph_rewrite.hpp"
#include "openvino/pass/pass.hpp"
namespace ov {
namespace frontend {
namespace pytorch {
namespace pass {
class AtenEinsumListConstructReplacer : public ov::pass::MatcherPass {
public:
OPENVINO_RTTI("ov::frontend::pytorch::pass::AtenEinsumListConstructReplacer");
AtenEinsumListConstructReplacer();
};
} // namespace pass
} // namespace pytorch
} // namespace frontend
} // namespace ov

View File

@ -0,0 +1,103 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestEinsumBatchMatMul(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(5, 2, 3).astype(np.float32), np.random.randn(5, 3, 4).astype(np.float32),)
def create_model(self):
import torch
class EinsumModelBatchMatmul(torch.nn.Module):
def forward(self, x, y):
eqn = "bij, bjk -> bik"
return torch.einsum(eqn, x, y)
ref_net = None
return EinsumModelBatchMatmul(), ref_net, "aten::einsum"
@pytest.mark.nightly
@pytest.mark.precommit
def test_einsum_batch_matmul(self, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision, ir_version)
class TestEinsumBatchDiagonal(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(3, 5, 5).astype(np.float32),)
def create_model(self):
import torch
class EinsumModelBatchDiagonal(torch.nn.Module):
def forward(self, x):
eqn = "kii -> ki"
return torch.einsum(eqn, x)
ref_net = None
return EinsumModelBatchDiagonal(), ref_net, "aten::einsum"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.xfail(reason='OpenVINO CPU plugin does not support einsum diagonal')
def test_einsum_batch_diagonal(self, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision, ir_version, dynamic_shapes=False)
class TestEinsumInnerProd(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(5).astype(np.float32), np.random.randn(5).astype(np.float32))
def create_model(self):
import torch
class EinsumModelInnerProd(torch.nn.Module):
def forward(self, x, y):
eqn = "i,i"
return torch.einsum(eqn, x, y)
ref_net = None
return EinsumModelInnerProd(), ref_net, "aten::einsum"
@pytest.mark.nightly
@pytest.mark.precommit
def test_einsum_inner_prod(self, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision, ir_version)
class TestEinsumTranspose(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(3, 5).astype(np.float32),)
def create_model(self):
import torch
class EinsumModelTranspose(torch.nn.Module):
def forward(self, x):
eqn = "ij->ji"
return torch.einsum(eqn, x)
ref_net = None
return EinsumModelTranspose(), ref_net, "aten::einsum"
@pytest.mark.nightly
@pytest.mark.precommit
def test_einsum_transpose(self, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision, ir_version)