[IE Samples][OV2.0] final clean up of old API headers (#9494)

* final clean up of old API headers, compile_tool separated from samples

* make cpplint happy
This commit is contained in:
Vladimir Dudnik 2022-01-13 11:12:20 +03:00 committed by GitHub
parent 113014161d
commit 28fb55dffe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 427 additions and 302 deletions

View File

@ -11,6 +11,7 @@
#include <vector>
// clang-format off
#include "openvino/openvino.hpp"
#include "openvino/pass/serialize.hpp"
#include "gna/gna_config.hpp"
@ -173,10 +174,8 @@ int main(int argc, char* argv[]) {
ov::runtime::Core core;
if (FLAGS_d.find("CPU") != std::string::npos && !FLAGS_l.empty()) {
// CPU (MKLDNN) extensions is loaded as a shared library and passed as a
// pointer to base extension
const auto extension_ptr = std::make_shared<InferenceEngine::Extension>(FLAGS_l);
core.add_extension(extension_ptr);
// CPU (MKLDNN) extensions is loaded as a shared library
core.add_extension(FLAGS_l);
slog::info << "CPU (MKLDNN) extensions is loaded " << FLAGS_l << slog::endl;
}

View File

@ -13,7 +13,6 @@
#include <string>
#include <vector>
#include "inference_engine.hpp"
#include "openvino/openvino.hpp"
// clang-format on
@ -31,17 +30,6 @@ void readInputFilesArguments(std::vector<std::string>& files, const std::string&
*/
void parseInputFilesArguments(std::vector<std::string>& files);
void processPrecision(InferenceEngine::CNNNetwork& network,
const std::string& ip,
const std::string& op,
const std::string& iop);
void processLayout(InferenceEngine::CNNNetwork& network,
const std::string& il,
const std::string& ol,
const std::string& iol);
void printInputAndOutputsInfo(const InferenceEngine::CNNNetwork& network);
void printInputAndOutputsInfo(const ov::Model& network);
void configurePrePostProcessing(std::shared_ptr<ov::Model>& function,
@ -55,7 +43,6 @@ void configurePrePostProcessing(std::shared_ptr<ov::Model>& function,
const std::string& oml,
const std::string& ioml);
//--- API 2.0 -------------------------------------------------------------------------
void printInputAndOutputsInfo(const ov::Model& network);
void printInputAndOutputsInfoShort(const ov::Model& network);
void processPrecision(const ov::Model& network, const std::string& ip, const std::string& op, const std::string& iop);

View File

@ -17,14 +17,12 @@
#include <limits>
#include <list>
#include <map>
#include <openvino/openvino.hpp>
#include <random>
#include <string>
#include <utility>
#include <vector>
// clang-format off
#include "inference_engine.hpp"
#include "openvino/openvino.hpp"
#include "slog.hpp"
// clang-format on
@ -124,16 +122,6 @@ inline std::string fileExt(const std::string& filename) {
return filename.substr(pos + 1);
}
inline slog::LogStream& operator<<(slog::LogStream& os, const InferenceEngine::Version& version) {
os << version.description << " version ......... ";
os << IE_VERSION_MAJOR << "." << IE_VERSION_MINOR << "." << IE_VERSION_PATCH << slog::endl;
os << "Build ........... ";
os << version.buildNumber << slog::endl;
return os;
}
inline slog::LogStream& operator<<(slog::LogStream& os, const ov::Version& version) {
os << version.description << " version ......... ";
os << OPENVINO_VERSION_MAJOR << "." << OPENVINO_VERSION_MINOR << "." << OPENVINO_VERSION_PATCH << slog::endl;
@ -144,16 +132,6 @@ inline slog::LogStream& operator<<(slog::LogStream& os, const ov::Version& versi
return os;
}
inline slog::LogStream& operator<<(slog::LogStream& os,
const std::map<std::string, InferenceEngine::Version>& versions) {
for (auto&& version : versions) {
os << version.first << slog::endl;
os << version.second << slog::endl;
}
return os;
}
inline slog::LogStream& operator<<(slog::LogStream& os, const std::map<std::string, ov::Version>& versions) {
for (auto&& version : versions) {
os << version.first << slog::endl;
@ -621,49 +599,6 @@ static UNUSED void printPerformanceCounts(const std::map<std::string, ov::runtim
std::cout.flags(fmt);
}
// static UNUSED void printPerformanceCounts(InferenceEngine::InferRequest request,
// std::ostream& stream,
// std::string deviceName,
// bool bshowHeader = true) {
// auto performanceMap = request.GetPerformanceCounts();
// printPerformanceCounts(performanceMap, stream, deviceName, bshowHeader);
//}
inline std::map<std::string, std::string> getMapFullDevicesNames(InferenceEngine::Core& ie,
std::vector<std::string> devices) {
std::map<std::string, std::string> devicesMap;
InferenceEngine::Parameter p;
for (std::string& deviceName : devices) {
if (deviceName != "") {
try {
p = ie.GetMetric(deviceName, METRIC_KEY(FULL_DEVICE_NAME));
devicesMap.insert(std::pair<std::string, std::string>(deviceName, p.as<std::string>()));
} catch (InferenceEngine::Exception&) {
}
}
}
return devicesMap;
}
inline std::string getFullDeviceName(std::map<std::string, std::string>& devicesMap, std::string device) {
std::map<std::string, std::string>::iterator it = devicesMap.find(device);
if (it != devicesMap.end()) {
return it->second;
} else {
return "";
}
}
inline std::string getFullDeviceName(InferenceEngine::Core& ie, std::string device) {
InferenceEngine::Parameter p;
try {
p = ie.GetMetric(device, METRIC_KEY(FULL_DEVICE_NAME));
return p.as<std::string>();
} catch (InferenceEngine::Exception&) {
return "";
}
}
/**
* @brief This class represents an object that is found by an object detection net
*/
@ -1019,97 +954,6 @@ static UNUSED void addRectangles(unsigned char* data,
}
}
inline std::size_t getTensorWidth(const InferenceEngine::TensorDesc& desc) {
const auto& layout = desc.getLayout();
const auto& dims = desc.getDims();
const auto& size = dims.size();
if ((size >= 2) && (layout == InferenceEngine::Layout::NCHW || layout == InferenceEngine::Layout::NHWC ||
layout == InferenceEngine::Layout::NCDHW || layout == InferenceEngine::Layout::NDHWC ||
layout == InferenceEngine::Layout::OIHW || layout == InferenceEngine::Layout::GOIHW ||
layout == InferenceEngine::Layout::OIDHW || layout == InferenceEngine::Layout::GOIDHW ||
layout == InferenceEngine::Layout::CHW || layout == InferenceEngine::Layout::HW)) {
// Regardless of layout, dimensions are stored in fixed order
return dims.back();
} else {
IE_THROW() << "Tensor does not have width dimension";
}
return 0;
}
inline std::size_t getTensorHeight(const InferenceEngine::TensorDesc& desc) {
const auto& layout = desc.getLayout();
const auto& dims = desc.getDims();
const auto& size = dims.size();
if ((size >= 2) && (layout == InferenceEngine::Layout::NCHW || layout == InferenceEngine::Layout::NHWC ||
layout == InferenceEngine::Layout::NCDHW || layout == InferenceEngine::Layout::NDHWC ||
layout == InferenceEngine::Layout::OIHW || layout == InferenceEngine::Layout::GOIHW ||
layout == InferenceEngine::Layout::OIDHW || layout == InferenceEngine::Layout::GOIDHW ||
layout == InferenceEngine::Layout::CHW || layout == InferenceEngine::Layout::HW)) {
// Regardless of layout, dimensions are stored in fixed order
return dims.at(size - 2);
} else {
IE_THROW() << "Tensor does not have height dimension";
}
return 0;
}
inline std::size_t getTensorChannels(const InferenceEngine::TensorDesc& desc) {
const auto& layout = desc.getLayout();
if (layout == InferenceEngine::Layout::NCHW || layout == InferenceEngine::Layout::NHWC ||
layout == InferenceEngine::Layout::NCDHW || layout == InferenceEngine::Layout::NDHWC ||
layout == InferenceEngine::Layout::C || layout == InferenceEngine::Layout::CHW ||
layout == InferenceEngine::Layout::NC || layout == InferenceEngine::Layout::CN) {
// Regardless of layout, dimensions are stored in fixed order
const auto& dims = desc.getDims();
switch (desc.getLayoutByDims(dims)) {
case InferenceEngine::Layout::C:
return dims.at(0);
case InferenceEngine::Layout::NC:
return dims.at(1);
case InferenceEngine::Layout::CHW:
return dims.at(0);
case InferenceEngine::Layout::NCHW:
return dims.at(1);
case InferenceEngine::Layout::NCDHW:
return dims.at(1);
case InferenceEngine::Layout::SCALAR: // [[fallthrough]]
case InferenceEngine::Layout::BLOCKED: // [[fallthrough]]
default:
IE_THROW() << "Tensor does not have channels dimension";
}
} else {
IE_THROW() << "Tensor does not have channels dimension";
}
return 0;
}
inline std::size_t getTensorBatch(const InferenceEngine::TensorDesc& desc) {
const auto& layout = desc.getLayout();
if (layout == InferenceEngine::Layout::NCHW || layout == InferenceEngine::Layout::NHWC ||
layout == InferenceEngine::Layout::NCDHW || layout == InferenceEngine::Layout::NDHWC ||
layout == InferenceEngine::Layout::NC || layout == InferenceEngine::Layout::CN) {
// Regardless of layout, dimensions are stored in fixed order
const auto& dims = desc.getDims();
switch (desc.getLayoutByDims(dims)) {
case InferenceEngine::Layout::NC:
return dims.at(0);
case InferenceEngine::Layout::NCHW:
return dims.at(0);
case InferenceEngine::Layout::NCDHW:
return dims.at(0);
case InferenceEngine::Layout::CHW: // [[fallthrough]]
case InferenceEngine::Layout::C: // [[fallthrough]]
case InferenceEngine::Layout::SCALAR: // [[fallthrough]]
case InferenceEngine::Layout::BLOCKED: // [[fallthrough]]
default:
IE_THROW() << "Tensor does not have channels dimension";
}
} else {
IE_THROW() << "Tensor does not have channels dimension";
}
return 0;
}
inline void showAvailableDevices() {
ov::runtime::Core core;
std::vector<std::string> devices = core.get_available_devices();
@ -1132,13 +976,12 @@ inline void showAvailableDevices() {
*/
std::map<std::string, std::string> parseConfig(const std::string& configName, char comment = '#');
//--- API 2.0 --------------------------------------------------------------------------------------
inline std::string getFullDeviceName(ov::runtime::Core& core, std::string device) {
InferenceEngine::Parameter p;
ov::Any p;
try {
p = core.get_metric(device, METRIC_KEY(FULL_DEVICE_NAME));
return p.as<std::string>();
} catch (InferenceEngine::Exception&) {
} catch (ov::Exception&) {
return "";
}
}

View File

@ -174,29 +174,6 @@ InferenceEngine::Precision getPrecision(const std::string& value) {
return getPrecision(value, supported_precisions);
}
void setPrecisions(const InferenceEngine::CNNNetwork& network, const std::string& iop) {
const auto user_precisions_map = parseArgMap(iop);
auto inputs = network.getInputsInfo();
auto outputs = network.getOutputsInfo();
for (auto&& item : user_precisions_map) {
const auto& layer_name = item.first;
const auto& user_precision = item.second;
const auto input = inputs.find(layer_name);
const auto output = outputs.find(layer_name);
if (input != inputs.end()) {
input->second->setPrecision(getPrecision(user_precision));
} else if (output != outputs.end()) {
output->second->setPrecision(getPrecision(user_precision));
} else {
throw std::logic_error(layer_name + " is not an input neither output");
}
}
}
using supported_type_t = std::unordered_map<std::string, ov::element::Type>;
ov::element::Type getType(std::string value, const supported_type_t& supported_precisions) {
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
@ -225,29 +202,6 @@ ov::element::Type getType(const std::string& value) {
} // namespace
void processPrecision(InferenceEngine::CNNNetwork& network,
const std::string& ip,
const std::string& op,
const std::string& iop) {
if (!ip.empty()) {
const auto user_precision = getPrecision(ip);
for (auto&& layer : network.getInputsInfo()) {
layer.second->setPrecision(user_precision);
}
}
if (!op.empty()) {
auto user_precision = getPrecision(op);
for (auto&& layer : network.getOutputsInfo()) {
layer.second->setPrecision(user_precision);
}
}
if (!iop.empty()) {
setPrecisions(network, iop);
}
}
namespace {
using supported_layouts_t = std::unordered_map<std::string, InferenceEngine::Layout>;
using matchLayoutToDims_t = std::unordered_map<size_t, size_t>;
@ -295,79 +249,8 @@ bool isMatchLayoutToDims(InferenceEngine::Layout layout, size_t dimension) {
return dimension == dims->second;
}
void setLayouts(const InferenceEngine::CNNNetwork& network, const std::string iol) {
const auto user_layouts_map = parseArgMap(iol);
auto inputs = network.getInputsInfo();
auto outputs = network.getOutputsInfo();
for (auto&& item : user_layouts_map) {
const auto& layer_name = item.first;
const auto& user_layout = getLayout(item.second);
const auto input = inputs.find(layer_name);
const auto output = outputs.find(layer_name);
if (input != inputs.end()) {
if (!isMatchLayoutToDims(user_layout, input->second->getTensorDesc().getDims().size())) {
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
}
input->second->setLayout(user_layout);
} else if (output != outputs.end()) {
if (!isMatchLayoutToDims(user_layout, output->second->getTensorDesc().getDims().size())) {
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
}
output->second->setLayout(user_layout);
} else {
throw std::logic_error(layer_name + " is not an input neither output");
}
}
}
} // namespace
void processLayout(InferenceEngine::CNNNetwork& network,
const std::string& il,
const std::string& ol,
const std::string& iol) {
if (!il.empty()) {
const auto layout = getLayout(il);
for (auto&& layer : network.getInputsInfo()) {
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
layer.second->setLayout(layout);
}
}
}
if (!ol.empty()) {
const auto layout = getLayout(ol);
for (auto&& layer : network.getOutputsInfo()) {
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
layer.second->setLayout(layout);
}
}
}
if (!iol.empty()) {
setLayouts(network, iol);
}
}
void printInputAndOutputsInfo(const InferenceEngine::CNNNetwork& network) {
std::cout << "Network inputs:" << std::endl;
for (auto&& layer : network.getInputsInfo()) {
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / "
<< layer.second->getLayout() << std::endl;
}
std::cout << "Network outputs:" << std::endl;
for (auto&& layer : network.getOutputsInfo()) {
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / "
<< layer.second->getLayout() << std::endl;
}
}
//--- API 2.0 -------------------------------------------------------------------------------------
void printInputAndOutputsInfoShort(const ov::Model& network) {
std::cout << "Network inputs:" << std::endl;
for (auto&& param : network.get_parameters()) {

View File

@ -2,21 +2,18 @@
// SPDX-License-Identifier: Apache-2.0
//
#include <format_reader_ptr.h>
#include <inference_engine.hpp>
#include <memory>
#include <string>
#include <vector>
// clang-format off
#include "ngraph/ngraph.hpp"
#include "openvino/openvino.hpp"
#include "ngraph/ngraph.hpp"
#include "format_reader_ptr.h"
#include "samples/args_helper.hpp"
#include "samples/common.hpp"
#include "samples/slog.hpp"
#include "format_reader_ptr.h"
// clang-format on
// thickness of a line (in pixels) to be used for bounding boxes

View File

@ -20,9 +20,6 @@
#include <vpu/private_plugin_config.hpp>
#include <vpu/utils/string.hpp>
#include "samples/common.hpp"
#include "samples/args_helper.hpp"
static constexpr char help_message[] =
"Optional. Print the usage message.";
@ -120,6 +117,425 @@ DEFINE_string(VPU_NUMBER_OF_SHAVES, "", number_of_shaves_message);
DEFINE_string(VPU_NUMBER_OF_CMX_SLICES, "", number_of_cmx_slices_message);
DEFINE_string(VPU_TILING_CMX_LIMIT_KB, "", tiling_cmx_limit_message);
namespace {
std::vector<std::string> splitStringList(const std::string& str, char delim) {
if (str.empty())
return {};
std::istringstream istr(str);
std::vector<std::string> result;
std::string elem;
while (std::getline(istr, elem, delim)) {
if (elem.empty()) {
continue;
}
result.emplace_back(std::move(elem));
}
return result;
}
std::map<std::string, std::string> parseArgMap(std::string argMap) {
argMap.erase(std::remove_if(argMap.begin(), argMap.end(), ::isspace), argMap.end());
const auto pairs = splitStringList(argMap, ',');
std::map<std::string, std::string> parsedMap;
for (auto&& pair : pairs) {
const auto lastDelimPos = pair.find_last_of(':');
auto key = pair.substr(0, lastDelimPos);
auto value = pair.substr(lastDelimPos + 1);
if (lastDelimPos == std::string::npos || key.empty() || value.empty()) {
throw std::invalid_argument("Invalid key/value pair " + pair + ". Expected <layer_name>:<value>");
}
parsedMap[std::move(key)] = std::move(value);
}
return parsedMap;
}
using supported_precisions_t = std::unordered_map<std::string, InferenceEngine::Precision>;
InferenceEngine::Precision getPrecision(std::string value, const supported_precisions_t& supported_precisions) {
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
const auto precision = supported_precisions.find(value);
if (precision == supported_precisions.end()) {
throw std::logic_error("\"" + value + "\"" + " is not a valid precision");
}
return precision->second;
}
InferenceEngine::Precision getPrecision(const std::string& value) {
static const supported_precisions_t supported_precisions = {
{"FP32", InferenceEngine::Precision::FP32}, {"f32", InferenceEngine::Precision::FP32},
{"FP16", InferenceEngine::Precision::FP16}, {"f16", InferenceEngine::Precision::FP16},
{"BF16", InferenceEngine::Precision::BF16}, {"bf16", InferenceEngine::Precision::BF16},
{"U64", InferenceEngine::Precision::U64}, {"u64", InferenceEngine::Precision::U64},
{"I64", InferenceEngine::Precision::I64}, {"i64", InferenceEngine::Precision::I64},
{"U32", InferenceEngine::Precision::U32}, {"u32", InferenceEngine::Precision::U32},
{"I32", InferenceEngine::Precision::I32}, {"i32", InferenceEngine::Precision::I32},
{"U16", InferenceEngine::Precision::U16}, {"u16", InferenceEngine::Precision::U16},
{"I16", InferenceEngine::Precision::I16}, {"i16", InferenceEngine::Precision::I16},
{"U8", InferenceEngine::Precision::U8}, {"u8", InferenceEngine::Precision::U8},
{"I8", InferenceEngine::Precision::I8}, {"i8", InferenceEngine::Precision::I8},
{"BOOL", InferenceEngine::Precision::BOOL}, {"boolean", InferenceEngine::Precision::BOOL},
};
return getPrecision(value, supported_precisions);
}
void setPrecisions(const InferenceEngine::CNNNetwork& network, const std::string& iop) {
const auto user_precisions_map = parseArgMap(iop);
auto inputs = network.getInputsInfo();
auto outputs = network.getOutputsInfo();
for (auto&& item : user_precisions_map) {
const auto& layer_name = item.first;
const auto& user_precision = item.second;
const auto input = inputs.find(layer_name);
const auto output = outputs.find(layer_name);
if (input != inputs.end()) {
input->second->setPrecision(getPrecision(user_precision));
} else if (output != outputs.end()) {
output->second->setPrecision(getPrecision(user_precision));
} else {
throw std::logic_error(layer_name + " is not an input neither output");
}
}
}
} //namespace
void processPrecision(InferenceEngine::CNNNetwork& network,
const std::string& ip,
const std::string& op,
const std::string& iop) {
if (!ip.empty()) {
const auto user_precision = getPrecision(ip);
for (auto&& layer : network.getInputsInfo()) {
layer.second->setPrecision(user_precision);
}
}
if (!op.empty()) {
auto user_precision = getPrecision(op);
for (auto&& layer : network.getOutputsInfo()) {
layer.second->setPrecision(user_precision);
}
}
if (!iop.empty()) {
setPrecisions(network, iop);
}
}
using supported_layouts_t = std::unordered_map<std::string, InferenceEngine::Layout>;
using matchLayoutToDims_t = std::unordered_map<size_t, size_t>;
InferenceEngine::Layout getLayout(std::string value, const supported_layouts_t& supported_layouts) {
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
const auto layout = supported_layouts.find(value);
if (layout == supported_layouts.end()) {
throw std::logic_error("\"" + value + "\"" + " is not a valid layout");
}
return layout->second;
}
InferenceEngine::Layout getLayout(const std::string& value) {
static const supported_layouts_t supported_layouts = {
{"NCDHW", InferenceEngine::Layout::NCDHW},
{"NDHWC", InferenceEngine::Layout::NDHWC},
{"NCHW", InferenceEngine::Layout::NCHW},
{"NHWC", InferenceEngine::Layout::NHWC},
{"CHW", InferenceEngine::Layout::CHW},
{"HWC", InferenceEngine::Layout::HWC},
{"NC", InferenceEngine::Layout::NC},
{"C", InferenceEngine::Layout::C},
};
return getLayout(value, supported_layouts);
}
bool isMatchLayoutToDims(InferenceEngine::Layout layout, size_t dimension) {
static const matchLayoutToDims_t matchLayoutToDims = { {static_cast<size_t>(InferenceEngine::Layout::NCDHW), 5},
{static_cast<size_t>(InferenceEngine::Layout::NDHWC), 5},
{static_cast<size_t>(InferenceEngine::Layout::NCHW), 4},
{static_cast<size_t>(InferenceEngine::Layout::NHWC), 4},
{static_cast<size_t>(InferenceEngine::Layout::CHW), 3},
{static_cast<size_t>(InferenceEngine::Layout::NC), 2},
{static_cast<size_t>(InferenceEngine::Layout::C), 1} };
const auto dims = matchLayoutToDims.find(static_cast<size_t>(layout));
if (dims == matchLayoutToDims.end()) {
throw std::logic_error("Layout is not valid.");
}
return dimension == dims->second;
}
void setLayouts(const InferenceEngine::CNNNetwork& network, const std::string iol) {
const auto user_layouts_map = parseArgMap(iol);
auto inputs = network.getInputsInfo();
auto outputs = network.getOutputsInfo();
for (auto&& item : user_layouts_map) {
const auto& layer_name = item.first;
const auto& user_layout = getLayout(item.second);
const auto input = inputs.find(layer_name);
const auto output = outputs.find(layer_name);
if (input != inputs.end()) {
if (!isMatchLayoutToDims(user_layout, input->second->getTensorDesc().getDims().size())) {
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
}
input->second->setLayout(user_layout);
} else if (output != outputs.end()) {
if (!isMatchLayoutToDims(user_layout, output->second->getTensorDesc().getDims().size())) {
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
}
output->second->setLayout(user_layout);
} else {
throw std::logic_error(layer_name + " is not an input neither output");
}
}
}
void processLayout(InferenceEngine::CNNNetwork& network,
const std::string& il,
const std::string& ol,
const std::string& iol) {
if (!il.empty()) {
const auto layout = getLayout(il);
for (auto&& layer : network.getInputsInfo()) {
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
layer.second->setLayout(layout);
}
}
}
if (!ol.empty()) {
const auto layout = getLayout(ol);
for (auto&& layer : network.getOutputsInfo()) {
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
layer.second->setLayout(layout);
}
}
}
if (!iol.empty()) {
setLayouts(network, iol);
}
}
using supported_type_t = std::unordered_map<std::string, ov::element::Type>;
ov::element::Type getType(std::string value, const supported_type_t& supported_precisions) {
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
const auto precision = supported_precisions.find(value);
if (precision == supported_precisions.end()) {
throw std::logic_error("\"" + value + "\"" + " is not a valid precision");
}
return precision->second;
}
ov::element::Type getType(const std::string& value) {
static const supported_type_t supported_types = {
{"FP32", ov::element::f32}, {"f32", ov::element::f32}, {"FP16", ov::element::f16},
{"f16", ov::element::f16}, {"BF16", ov::element::bf16}, {"bf16", ov::element::bf16},
{"U64", ov::element::u64}, {"u64", ov::element::u64}, {"I64", ov::element::i64},
{"i64", ov::element::i64}, {"U32", ov::element::u32}, {"u32", ov::element::u32},
{"I32", ov::element::i32}, {"i32", ov::element::i32}, {"U16", ov::element::u16},
{"u16", ov::element::u16}, {"I16", ov::element::i16}, {"i16", ov::element::i16},
{"U8", ov::element::u8}, {"u8", ov::element::u8}, {"I8", ov::element::i8},
{"i8", ov::element::i8}, {"BOOL", ov::element::boolean}, {"boolean", ov::element::boolean},
};
return getType(value, supported_types);
}
void configurePrePostProcessing(std::shared_ptr<ov::Model>& model,
const std::string& ip,
const std::string& op,
const std::string& iop,
const std::string& il,
const std::string& ol,
const std::string& iol,
const std::string& iml,
const std::string& oml,
const std::string& ioml) {
auto preprocessor = ov::preprocess::PrePostProcessor(model);
const auto inputs = model->inputs();
const auto outputs = model->outputs();
if (!ip.empty()) {
auto type = getType(ip);
for (size_t i = 0; i < inputs.size(); i++) {
preprocessor.input(i).tensor().set_element_type(type);
}
}
if (!op.empty()) {
auto type = getType(op);
for (size_t i = 0; i < outputs.size(); i++) {
preprocessor.output(i).tensor().set_element_type(type);
}
}
if (!iop.empty()) {
const auto user_precisions_map = parseArgMap(iop);
for (auto&& item : user_precisions_map) {
const auto& tensor_name = item.first;
const auto type = getType(item.second);
bool tensorFound = false;
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].get_names().count(tensor_name)) {
preprocessor.input(i).tensor().set_element_type(type);
tensorFound = true;
break;
}
}
if (!tensorFound) {
for (size_t i = 0; i < outputs.size(); i++) {
if (outputs[i].get_names().count(tensor_name)) {
preprocessor.output(i).tensor().set_element_type(type);
tensorFound = true;
break;
}
}
}
OPENVINO_ASSERT(!tensorFound, "Model doesn't have input/output with tensor name: ", tensor_name);
}
}
if (!il.empty()) {
for (size_t i = 0; i < inputs.size(); i++) {
preprocessor.input(i).tensor().set_layout(ov::Layout(il));
}
}
if (!ol.empty()) {
for (size_t i = 0; i < outputs.size(); i++) {
preprocessor.output(i).tensor().set_layout(ov::Layout(ol));
}
}
if (!iol.empty()) {
const auto user_precisions_map = parseArgMap(iol);
for (auto&& item : user_precisions_map) {
const auto& tensor_name = item.first;
bool tensorFound = false;
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].get_names().count(tensor_name)) {
preprocessor.input(i).tensor().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
if (!tensorFound) {
for (size_t i = 0; i < outputs.size(); i++) {
if (outputs[i].get_names().count(tensor_name)) {
preprocessor.output(i).tensor().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
}
OPENVINO_ASSERT(!tensorFound, "Model doesn't have input/output with tensor name: ", tensor_name);
}
}
if (!iml.empty()) {
for (size_t i = 0; i < inputs.size(); i++) {
preprocessor.input(i).model().set_layout(ov::Layout(iml));
}
}
if (!oml.empty()) {
for (size_t i = 0; i < outputs.size(); i++) {
preprocessor.output(i).model().set_layout(ov::Layout(oml));
}
}
if (!ioml.empty()) {
const auto user_precisions_map = parseArgMap(ioml);
for (auto&& item : user_precisions_map) {
const auto& tensor_name = item.first;
bool tensorFound = false;
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].get_names().count(tensor_name)) {
preprocessor.input(i).model().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
if (!tensorFound) {
for (size_t i = 0; i < outputs.size(); i++) {
if (outputs[i].get_names().count(tensor_name)) {
preprocessor.output(i).model().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
}
OPENVINO_ASSERT(!tensorFound, "Model doesn't have input/output with tensor name: ", tensor_name);
}
}
model = preprocessor.build();
}
void printInputAndOutputsInfo(const InferenceEngine::CNNNetwork& network) {
std::cout << "Network inputs:" << std::endl;
for (auto&& layer : network.getInputsInfo()) {
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / "
<< layer.second->getLayout() << std::endl;
}
std::cout << "Network outputs:" << std::endl;
for (auto&& layer : network.getOutputsInfo()) {
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / "
<< layer.second->getLayout() << std::endl;
}
}
void printInputAndOutputsInfoShort(const ov::Model& network) {
std::cout << "Network inputs:" << std::endl;
for (auto&& param : network.get_parameters()) {
auto l = param->get_layout();
std::cout << " " << param->get_friendly_name() << " : " << param->get_element_type() << " / "
<< param->get_layout().to_string() << std::endl;
}
std::cout << "Network outputs:" << std::endl;
for (auto&& result : network.get_results()) {
std::cout << " " << result->get_friendly_name() << " : " << result->get_element_type() << " / "
<< result->get_layout().to_string() << std::endl;
}
}
inline std::string fileNameNoExt(const std::string& filepath) {
auto pos = filepath.rfind('.');
if (pos == std::string::npos)
return filepath;
return filepath.substr(0, pos);
}
static void showUsage() {
std::cout << "compile_tool [OPTIONS]" << std::endl;
std::cout << std::endl;
@ -337,7 +753,7 @@ int main(int argc, char* argv[]) {
auto model = core.read_model(FLAGS_m);
configurePrePostProcessing(model, FLAGS_ip, FLAGS_op, FLAGS_iop, FLAGS_il, FLAGS_ol, FLAGS_iol, FLAGS_iml, FLAGS_oml, FLAGS_ioml);
printInputAndOutputsInfo(*model);
printInputAndOutputsInfoShort(*model);
auto timeBeforeLoadNetwork = std::chrono::steady_clock::now();
auto compiledModel = core.compile_model(model, FLAGS_d, configure());
loadNetworkTimeElapsed = std::chrono::duration_cast<TimeDiff>(std::chrono::steady_clock::now() - timeBeforeLoadNetwork);