[PT FE]: support aten:resolve_neg, aten::resolve_conj (#21362)

* [PT FE]: support aten:resolve_neg, aten::resolve_conj

* Update src/frontends/pytorch/src/op_table.cpp
This commit is contained in:
Ekaterina Aidova 2023-11-29 14:34:46 +04:00 committed by GitHub
parent 97588dc118
commit 2b14ea97fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 59 additions and 0 deletions

View File

@ -468,6 +468,11 @@ const std::map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::repeat_interleave", op::translate_repeat_interleave},
{"aten::reshape", op::translate_reshape},
{"aten::reshape_as", op::translate_reshape_as},
// TO DO: enable behaviour for resolve_conj and resolve_neg complex tensors,
// when complex dtype will be supported
// for real dtypes, these operations return input tensor without changes and can be skipped
{"aten::resolve_conj", op::skip_node},
{"aten::resolve_neg", op::skip_node},
{"aten::roll", op::translate_roll},
{"aten::round", op::translate_round},
{"aten::rsqrt", op::translate_rsqrt},

View File

@ -0,0 +1,54 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestResolveConjNeg(PytorchLayerTest):
def _prepare_input(self, dtype="float32"):
import numpy as np
return (np.random.randn(2, 4).astype(dtype),)
def _prepare_input_complex(self):
import numpy as np
return (np.array([[2+3j, 3-2j, 4-9j,10+1j], [1-3j, 3+2j, 4+9j,10-5j]]), )
def create_model(self, op_type):
import torch
ops = {
"resolve_conj": torch.resolve_conj,
"resolve_neg": torch.resolve_neg
}
op = ops[op_type]
class aten_resolve(torch.nn.Module):
def __init__(self, op):
super(aten_resolve, self).__init__()
self.op = op
def forward(self, x):
return self.op(x)
ref_net = None
return aten_resolve(op), ref_net, f"aten::{op_type}"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("op_type", ["resolve_neg", "resolve_conj"])
@pytest.mark.parametrize("dtype", ["float32", "int32"])
def test_reslove(self, op_type, dtype, ie_device, precision, ir_version):
self._test(*self.create_model(op_type), ie_device, precision, ir_version, kwargs_to_prepare_input={"dtype": dtype})
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("op_type", ["resolve_neg", "resolve_conj"])
@pytest.mark.xfail(reason="complex dtype is not supported yet")
def test_resolve_complex(self, op_type, ie_device, precision, ir_version):
self._prepare_input = self._prepare_input_complex
self._test(*self.create_model(op_type), ie_device, precision, ir_version)