[Coverity] fix coverity (#18784)

* fix CVS-112758

* fix CVS-114053

* fix CVS-116203

* fix CVS-112785 part 0

* fix CVS-112785 part 1

* fix CVS-112785 part 2

* fix CVS-112785 part 2+

* Update src/plugins/intel_gpu/src/plugin/ops/gather.cpp

Co-authored-by: Roman Lyamin <Roman.Lyamin@intel.com>

* fix CVS-112785 OPENVINO_ASSERT

* add suggestion

* fix CVS-112785

---------

Co-authored-by: Roman Lyamin <Roman.Lyamin@intel.com>
This commit is contained in:
Andrei Gorbachev 2023-08-04 15:38:06 +01:00 committed by GitHub
parent b76fc24824
commit 36309938d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
49 changed files with 98 additions and 95 deletions

View File

@ -21,7 +21,7 @@ private:
};
struct fused_primitive_desc {
explicit fused_primitive_desc(std::shared_ptr<const primitive> prim) : desc(prim) {}
explicit fused_primitive_desc(const std::shared_ptr<const primitive>& prim) : desc(prim) {}
template <class PType>
bool is_type() const {

View File

@ -74,8 +74,8 @@ struct kernel_impl_params {
const std::vector<cldnn::fused_primitive_desc>& _fused_descs)
: has_runtime_layouts(true)
, prog(&_prog)
, strm(_strm)
, desc(_desc)
, strm(std::move(_strm))
, desc(std::move(_desc))
, unique_id(_uid)
, input_layouts(_in_layouts)
, output_layouts(_out_layouts)
@ -114,10 +114,10 @@ struct kernel_impl_params {
}
bool is_dynamic() const {
for (auto i : input_layouts)
for (auto& i : input_layouts)
if (i.is_dynamic())
return true;
for (auto i : output_layouts)
for (auto& i : output_layouts)
if (i.is_dynamic())
return true;
return false;

View File

@ -70,7 +70,7 @@ public:
using Ptr = std::shared_ptr<VariableState>;
VariableState(cldnn::memory_ptr mem = nullptr) :
memory { mem }, is_set { false } {
memory { std::move(mem) }, is_set { false } {
}
void set_memory(cldnn::memory_ptr new_mem) {
memory = new_mem;

View File

@ -41,13 +41,13 @@ public:
using variable_states_map = std::map<std::string, std::vector<cldnn::network::VariableState::Ptr>>;
Graph(InferenceEngine::CNNNetwork& network,
RemoteContextImpl::Ptr context,
const RemoteContextImpl::Ptr& context,
const ExecutionConfig& config,
uint16_t stream_id = 0,
InferenceEngine::InputsDataMap* inputs = nullptr,
InferenceEngine::OutputsDataMap* outputs = nullptr);
Graph(cldnn::BinaryInputBuffer& ib,
RemoteContextImpl::Ptr context,
const RemoteContextImpl::Ptr& context,
const ExecutionConfig& config,
uint16_t stream_id = 0,
InferenceEngine::InputsDataMap* inputs = nullptr,

View File

@ -142,7 +142,7 @@ public:
template<typename PType, typename = typename std::enable_if<!is_smart_pointer<PType>::value>::type>
void add_primitive(const ngraph::Node& op, PType prim, std::vector<std::string> aliases = {}) {
add_primitive(op, std::static_pointer_cast<cldnn::primitive>(std::make_shared<PType>(prim)), aliases);
add_primitive(op, std::static_pointer_cast<cldnn::primitive>(std::make_shared<PType>(prim)), std::move(aliases));
}
void add_primitive(const ngraph::Node& op, std::shared_ptr<cldnn::primitive> prim, std::vector<std::string> aliases = {});

View File

@ -24,7 +24,7 @@ struct data : public primitive_base<data> {
/// @param mem @ref memory object which contains data.
/// @note If memory is attached by memory::attach(), the attached buffer should be valid till network build.
data(const primitive_id& id, memory::ptr mem)
: primitive_base(id, {}, {padding()}), mem(mem) {}
: primitive_base(id, {}, {padding()}), mem(std::move(mem)) {}
/// @brief @ref memory object which contains data.
/// @note If memory is attached by memory::attach(), the attached buffer should be valid till network build.

View File

@ -68,8 +68,8 @@ struct loop : public primitive_base<loop> {
/// @param stride Step of iteration. Negative value means backward iteration. Applies only when axis >=0.
io_primitive_map(primitive_id external_id = "", primitive_id internal_id = "",
int64_t axis = -1, int64_t start = 0, int64_t end = -1, int64_t stride = 1) :
external_id(external_id),
internal_id(internal_id),
external_id(std::move(external_id)),
internal_id(std::move(internal_id)),
axis(axis),
start(start),
end(end),

View File

@ -43,7 +43,7 @@ struct mutable_data : public primitive_base<mutable_data> {
const std::vector<input_info>& inputs,
memory::ptr mem,
filler_type fill_type = filler_type::no_fill)
: primitive_base(id, inputs, {padding()}), mem(mem), fill_type(fill_type) {}
: primitive_base(id, inputs, {padding()}), mem(std::move(mem)), fill_type(fill_type) {}
/// @brief @ref memory object which contains data.
/// @note If memory is attached by memory::attach(), the attached buffer should be valid till network build.

View File

@ -35,8 +35,8 @@ struct primitive_info;
/// @details Contains infomation about id and output index of input primitive.
struct input_info {
input_info() : pid(""), idx(0) {}
input_info(primitive_id pid) : pid(pid), idx(0) {}
input_info(primitive_id pid, int idx) : pid(pid), idx(idx) {}
input_info(primitive_id pid) : pid(std::move(pid)), idx(0) {}
input_info(primitive_id pid, int idx) : pid(std::move(pid)), idx(idx) {}
/// @brief Copy assignment.
input_info& operator=(const input_info& other) {

View File

@ -208,7 +208,7 @@ public:
}
void set_remove_item_callback(FuncRemoveItem callback) {
_remove_popped_item = callback;
_remove_popped_item = std::move(callback);
}
private:

View File

@ -123,7 +123,8 @@ private:
template <class T, mem_lock_type lock_type = mem_lock_type::read_write>
struct mem_lock {
explicit mem_lock(memory::ptr mem, const stream& stream) : _mem(mem), _stream(stream), _ptr(reinterpret_cast<T*>(_mem->lock(_stream, lock_type))) {}
explicit mem_lock(memory::ptr mem, const stream& stream) : _mem(std::move(mem)), _stream(stream),
_ptr(reinterpret_cast<T*>(_mem->lock(_stream, lock_type))) {}
~mem_lock() {
_ptr = nullptr;

View File

@ -154,7 +154,7 @@ concatenation_inst::typed_primitive_inst(network& network, concatenation_node co
auto nodes_list = stack.front();
stack.pop_front();
for (auto processed_nodes : *nodes_list) {
for (const auto& processed_nodes : *nodes_list) {
auto processed_node = processed_nodes.first;
processed_node->_outputs = _outputs;
if (processed_node->type() == concatenation::type_id() && processed_node->can_be_optimized()) {

View File

@ -198,8 +198,8 @@ layout gemm_inst::transform_output_layout(const std::shared_ptr<const gemm> prim
return idx;
};
output_pshape[get_spatial_idx(updated_output_layout.format, 0)] = N;
output_pshape[get_spatial_idx(updated_output_layout.format, 1)] = M;
output_pshape[get_spatial_idx(updated_output_layout.format, 0)] = std::move(N);
output_pshape[get_spatial_idx(updated_output_layout.format, 1)] = std::move(M);
updated_output_layout.set_partial_shape(output_pshape);
}
return updated_output_layout;

View File

@ -72,7 +72,7 @@ struct loop_impl : typed_primitive_impl<loop> {
// read trip_count from outer network
bool update_num_iterations = false;
memory::ptr trip_count_mem = outer_network.get_primitive(primitive->trip_count_id)->output_memory_ptr();
int64_t trip_count = loop_node::read_scalar_value(trip_count_mem, stream);
int64_t trip_count = loop_node::read_scalar_value(std::move(trip_count_mem), stream);
if (trip_count < 0) {
trip_count = _max_iteration;
update_num_iterations = true;
@ -94,7 +94,7 @@ struct loop_impl : typed_primitive_impl<loop> {
// If there are concatenated_output_mem_mappings or backedge_memory_mappings we need to wait for
// previous tasks before accessing memory in get_sliced_mem() and setup_iteration() functions
if (!concatenated_input_mem_mappings.empty() || !instance.backedge_memory_mappings.empty()) {
for (auto e : events) {
for (auto& e : events) {
e->wait();
}
}

View File

@ -95,7 +95,8 @@ struct crop_impl : public typed_primitive_impl<crop> {
if (!op)
op = std::make_shared<ov::op::v8::Slice>();
op->evaluate(output_host_tensors, input_host_tensors);
OPENVINO_ASSERT(op->evaluate(output_host_tensors, input_host_tensors),
"[GPU] Couldn't execute crop primitive with id ", instance.id());
ev->set();

View File

@ -499,7 +499,7 @@ public:
std::vector<std::array<float, PRIOR_BOX_SIZE>>& prior_variances) {
auto input_prior_box = instance.prior_box_memory();
const int num_of_priors = static_cast<int>(prior_bboxes.size()) / images_count;
mem_lock<dtype, mem_lock_type::read> lock{input_prior_box, stream};
mem_lock<dtype, mem_lock_type::read> lock{std::move(input_prior_box), stream};
for (int i = 0; i < images_count; i++) {
auto prior_box_data =
lock.begin() + i * num_of_priors * prior_info_size * (variance_encoded_in_target ? 1 : 2);

View File

@ -309,7 +309,7 @@ void store_second_output(stream& stream, memory::ptr mem, const std::vector<resu
}
template <typename T>
void store_third_output_impl(stream& stream, memory::ptr mem, const std::vector<result_indices>& result) {
void store_third_output_impl(stream& stream, const memory::ptr& mem, const std::vector<result_indices>& result) {
mem_lock<T, mem_lock_type::write> lock(mem, stream);
auto ptr = lock.data();
ptr[0] = static_cast<T>(result.size());

View File

@ -284,7 +284,7 @@ struct proposal_impl : typed_primitive_impl<proposal> {
int fm_sz = fm_w * fm_h;
mem_lock<dtype, mem_lock_type::read> cls_scores_ptr{cls_scores, stream};
mem_lock<dtype, mem_lock_type::read> bbox_pred_ptr{bbox_pred, stream};
mem_lock<dtype, mem_lock_type::read> bbox_pred_ptr{std::move(bbox_pred), stream};
const dtype* cls_scores_mem = cls_scores_ptr.data();
const dtype* bbox_pred_mem = bbox_pred_ptr.data();

View File

@ -160,7 +160,7 @@ struct resample_impl : typed_primitive_impl_ocl<resample> {
bool scales_calc_mod = primitive->shape_calc_mode == resample::InterpolateOp::ShapeCalcMode::SCALES;
if (scales_calc_mod && impl_param.input_layouts.size() > 1 && scales.empty()) {
auto mem = impl_param.memory_deps.at(2);
scales = read_vector<float>(mem, impl_param.get_stream());
scales = read_vector<float>(std::move(mem), impl_param.get_stream());
}
params.scales = scales;

View File

@ -118,9 +118,9 @@ public:
std::vector<uint8_t> end_mask(end_mask_.begin(), end_mask_.end());
std::vector<uint8_t> new_axis_mask(new_axis_mask_.begin(), new_axis_mask_.end());
std::vector<uint8_t> shrink_axis_mask(shrink_axis_mask_.begin(), shrink_axis_mask_.end());
params.end_mask = end_mask;
params.end_mask = std::move(end_mask);
pad_vector_to_size(params.end_mask, dims_num, 0);
params.begin_mask = begin_mask;
params.begin_mask = std::move(begin_mask);
pad_vector_to_size(params.begin_mask, dims_num, 0);
params.new_axis_mask = new_axis_mask;

View File

@ -13,7 +13,7 @@ namespace cldnn {
class EltwiseFuseParams : public NodeFuseParams {
public:
EltwiseFuseParams(std::shared_ptr<eltwise> desc) : NodeFuseParams(eltwise::type_id()), _desc(desc) {}
EltwiseFuseParams(std::shared_ptr<eltwise> desc) : NodeFuseParams(eltwise::type_id()), _desc(std::move(desc)) {}
size_t ops_count() const override { return 1; }
std::shared_ptr<eltwise> _desc;

View File

@ -123,22 +123,22 @@ public:
static void add(impl_types impl_type, shape_types shape_type, factory_type factory,
const std::vector<data_types>& types, const std::vector<format::type>& formats) {
add(impl_type, shape_type, factory, combine(types, formats));
add(impl_type, shape_type, std::move(factory), combine(types, formats));
}
static void add(impl_types impl_type, factory_type factory,
const std::vector<data_types>& types, const std::vector<format::type>& formats) {
add(impl_type, factory, combine(types, formats));
add(impl_type, std::move(factory), combine(types, formats));
}
static void add(impl_types impl_type, factory_type factory, std::set<key_type> keys) {
OPENVINO_ASSERT(impl_type != impl_types::any, "[GPU] Can't register impl with type any");
add(impl_type, shape_types::static_shape, factory, keys);
add(impl_type, shape_types::static_shape, std::move(factory), keys);
}
static void add(impl_types impl_type, shape_types shape_type, factory_type factory, std::set<key_type> keys) {
OPENVINO_ASSERT(impl_type != impl_types::any, "[GPU] Can't register impl with type any");
list_type::instance().push_back({impl_type, shape_type, keys, factory});
list_type::instance().push_back({impl_type, shape_type, keys, std::move(factory)});
}
static std::set<key_type> combine(const std::vector<data_types>& types, const std::vector<format::type>& formats) {

View File

@ -254,7 +254,7 @@ public:
} else {
auto body_output_prim = body.at(body_output->first);
auto mem = get_program().get_engine().allocate_memory(body_output_layout);
body_output_prim.reset(new mutable_data(body_output->first, mem));
body_output_prim.reset(new mutable_data(body_output->first, std::move(mem)));
}
}
}
@ -351,9 +351,9 @@ public:
std::shared_ptr<primitive_inst> _from_primitive, std::shared_ptr<primitive_inst> _to_primitive,
std::vector<memory::ptr> _from_mems, memory::ptr _initial_mem, cldnn::stream& _stream, backedge_type _type = CONCAT_OUTPUT):
from_primitive(_from_primitive),
to_primitive(_to_primitive),
to_primitive(std::move(_to_primitive)),
from_mems(_from_mems),
initial_mem(_initial_mem),
initial_mem(std::move(_initial_mem)),
stream(_stream),
type(_type),
total_bytes(initial_mem->get_layout().bytes_count()) {
@ -364,9 +364,9 @@ public:
std::shared_ptr<primitive_inst> _from_primitive, std::shared_ptr<primitive_inst> _to_primitive,
memory::ptr _from_mem, memory::ptr _initial_mem, cldnn::stream& _stream, backedge_type _type = SINGLE_SHARED):
from_primitive(_from_primitive),
to_primitive(_to_primitive),
from_mems{_from_mem},
initial_mem(_initial_mem),
to_primitive(std::move(_to_primitive)),
from_mems{std::move(_from_mem)},
initial_mem(std::move(_initial_mem)),
stream(_stream),
type(_type),
total_bytes(initial_mem->get_layout().bytes_count()) {
@ -377,8 +377,8 @@ public:
std::shared_ptr<primitive_inst> _from_primitive, std::shared_ptr<primitive_inst> _to_primitive,
memory::ptr _initial_mem, cldnn::stream& _stream, backedge_type _type = SINGLE):
from_primitive(_from_primitive),
to_primitive(_to_primitive),
initial_mem(_initial_mem),
to_primitive(std::move(_to_primitive)),
initial_mem(std::move(_initial_mem)),
stream(_stream),
type(_type),
total_bytes(initial_mem->get_layout().bytes_count()) {
@ -402,7 +402,7 @@ public:
mem1->copy_from(stream, *initial_mem);
} else {
memory::ptr mem2 = from_primitive->output_memory_ptr();
to_primitive->set_output_memory(mem2);
to_primitive->set_output_memory(std::move(mem2));
from_primitive->set_output_memory(mem1);
}
}

View File

@ -27,7 +27,7 @@ private:
public:
typed_program_node(std::shared_ptr<primitive> prim, program& prog)
: parent(prim, prog) {
: parent(std::move(prim), prog) {
init_params_list();
can_share_buffer(false);
}

View File

@ -44,11 +44,11 @@ class typed_primitive_inst;
*/
struct primitive_impl {
primitive_impl() = default;
explicit primitive_impl(std::shared_ptr<WeightsReorderParams> params, std::string kernel_name = "", bool is_dynamic = false)
explicit primitive_impl(const std::shared_ptr<WeightsReorderParams>& params, std::string kernel_name = "", bool is_dynamic = false)
: _weights_reorder_params(params), _kernel_name(kernel_name), _is_dynamic(is_dynamic) {
}
explicit primitive_impl(std::string kernel_name, bool is_dynamic = false) :
primitive_impl(nullptr, kernel_name, is_dynamic) {}
primitive_impl(nullptr, std::move(kernel_name), is_dynamic) {}
virtual ~primitive_impl() = default;
virtual std::vector<layout> get_internal_buffer_layouts() const = 0;
@ -502,7 +502,7 @@ protected:
typed_primitive_inst_base(network& network, typed_node const& node, memory::ptr buffer)
: typed_primitive_inst_base(network, node, false) {
_outputs[0] = buffer;
_outputs[0] = std::move(buffer);
}
private:

View File

@ -103,7 +103,7 @@ public:
bool is_fused_dep(size_t dep_idx) const;
bool has_fused_dep() const {
for (auto fused : get_fused_primitives()) {
for (auto& fused : get_fused_primitives()) {
if (fused.has_outer_dep())
return true;
}
@ -113,7 +113,7 @@ public:
int32_t get_first_fused_dep_idx() const {
if (!has_fused_dep())
return -1;
for (auto fused : get_fused_primitives()) {
for (auto& fused : get_fused_primitives()) {
if (fused.has_outer_dep())
return fused.outer_dep_start_idx;
}

View File

@ -350,7 +350,7 @@ void loop_inst::preprocess_output_memory() {
const int64_t num_elements_iteration = sliced_layout.count() / num_elements_batch;
const int64_t start = output_mapping.start < 0? _max_iteration - 1: output_mapping.start;
concatenated_memory_mapping memory_mapping_info(
output_mapping.axis, to_mem, sliced_mems, _network.get_stream(),
output_mapping.axis, std::move(to_mem), sliced_mems, _network.get_stream(),
num_elements_iteration, output_mapping.stride, start);
memory_mapping_info.sliced_data_prim = body_network->get_primitive(internal_id);
memory_mapping_info.concat_data_prim = get_network().get_primitive(external_id);

View File

@ -47,10 +47,10 @@ std::string lstm_inst::to_string(lstm_node const& node) {
json_composite lstm_info;
lstm_info.add("weights id", weights_id);
lstm_info.add("recurrent id", recurrent_id);
lstm_info.add("bias id", bias_id);
lstm_info.add("peepholes id", peepholes_id);
lstm_info.add("initial_hidden id", initial_hidden_id);
lstm_info.add("initial_cell id", initial_cell_id);
lstm_info.add("bias id", std::move(bias_id));
lstm_info.add("peepholes id", std::move(peepholes_id));
lstm_info.add("initial_hidden id", std::move(initial_hidden_id));
lstm_info.add("initial_cell id", std::move(initial_cell_id));
node_info->add("lstm info", lstm_info);
node_info->dump(primitive_description);

View File

@ -37,10 +37,10 @@ std::string lstm_dynamic_inst::to_string(lstm_dynamic_node const& node) {
std::stringstream primitive_description;
json_composite lstm_dynamic_info;
lstm_dynamic_info.add("dyn_length id", desc->dyn_length);
lstm_dynamic_info.add("weights id", weights_id);
lstm_dynamic_info.add("weights id", std::move(weights_id));
lstm_dynamic_info.add("recurrent id", recurrent_id);
lstm_dynamic_info.add("bias id", bias_id);
lstm_dynamic_info.add("initial_hidden id", initial_hidden_id);
lstm_dynamic_info.add("initial_hidden id", std::move(initial_hidden_id));
lstm_dynamic_info.add("initial_cell id", initial_cell_id);
node_info->add("lstm_dynamic info", lstm_dynamic_info);
node_info->dump(primitive_description);

View File

@ -104,10 +104,10 @@ std::string lstm_dynamic_timeloop_inst::to_string(lstm_dynamic_timeloop_node con
json_composite lstm_dynamic_input_info;
lstm_dynamic_input_info.add("dyn_length id", desc->dyn_length);
lstm_dynamic_input_info.add("recurrent id", desc->recurrent);
lstm_dynamic_input_info.add("initial cell id", initial_cell_id);
lstm_dynamic_input_info.add("initial cell id", std::move(initial_cell_id));
lstm_dynamic_input_info.add("initial hidden id", initial_hidden_id);
lstm_dynamic_input_info.add("last cell id", last_cell_id);
lstm_dynamic_input_info.add("last hidden id", last_hidden_id);
lstm_dynamic_input_info.add("last hidden id", std::move(last_hidden_id));
lstm_dynamic_input_info.add("max seq len", node.input().get_output_layout().feature());
lstm_dynamic_input_info.add("hidden size", node.recurrent().get_output_layout().spatial(0));
lstm_dynamic_input_info.add("direction", node.recurrent().get_output_layout().feature());

View File

@ -42,7 +42,7 @@ std::string lstm_gemm_inst::to_string(lstm_gemm_node const& node) {
json_composite lstm_gemm_info;
lstm_gemm_info.add("weights id", weights_id);
lstm_gemm_info.add("recurrent id", recurrent_id);
lstm_gemm_info.add("bias id", bias_id);
lstm_gemm_info.add("bias id", std::move(bias_id));
lstm_gemm_info.add("hidden id", hidden_id);
node_info->add("lstm gemm info", lstm_gemm_info);
node_info->dump(primitive_description);

View File

@ -37,7 +37,7 @@ mutable_data_node::typed_program_node(const std::shared_ptr<mutable_data> dprim,
}
void mutable_data_node::attach_memory(memory::ptr new_mem, bool invalidate_users_if_changed) {
mem = new_mem;
mem = std::move(new_mem);
recalc_output_layout(invalidate_users_if_changed);
}

View File

@ -37,7 +37,7 @@ std::string mvn_inst::to_string(mvn_node const& node) {
json_composite mvn_info;
mvn_info.add("input id", input.id());
mvn_info.add("epsilon", epsilon);
mvn_info.add("reduction axes", axes);
mvn_info.add("reduction axes", std::move(axes));
mvn_info.add("normalize_variance region", normalize_variance);
mvn_info.add("eps_inside_sqrt region", eps_inside_sqrt);

View File

@ -60,7 +60,7 @@ layout gather_nonzero_inst::calc_output_layout(gather_nonzero_node const& node,
auto out_size = read_vector<int64_t>(impl_param.memory_deps.at(1), impl_param.get_stream());
ov::Shape output_shape(out_size.begin(), out_size.end());
ov::PartialShape output_pshape(output_shape);
return layout{output_pshape, cldnn::data_types::i32, cldnn::format::bfyx};
return layout{std::move(output_pshape), cldnn::data_types::i32, cldnn::format::bfyx};
} else {
return layout{ov::PartialShape({ov::Dimension::dynamic(), ov::Dimension::dynamic(), 1, 1}), cldnn::data_types::i32, cldnn::format::bfyx};
}

View File

@ -297,7 +297,7 @@ void primitive_inst::update_shape() {
if (_deps[i].first->get_node().is_in_shape_of_subgraph()) {
bool can_skip = true;
const auto& insts = _deps[i].first->dependant_shape_of_insts;
for (auto inst : insts) {
for (auto& inst : insts) {
can_skip &= !inst->shape_changed();
}
if (can_skip)
@ -631,7 +631,7 @@ bool primitive_inst::update_impl() {
if (!can_be_optimized()) {
auto& kernels_cache = get_network().get_program()->get_kernels_cache();
auto kernels = kernels_cache.compile(updated_params_no_dyn_pad, _impl->get_kernels_source());
_impl->set_kernels(kernels);
_impl->set_kernels(std::move(kernels));
cache.add(updated_params_no_dyn_pad, _impl->clone());
}
auto new_impl_str = _impl != nullptr ? _impl->get_kernel_name() : "nullptr";
@ -720,7 +720,7 @@ void primitive_inst::do_runtime_in_place_concat() {
std::vector<kernel_impl_params> pred_params;
std::vector<layout> preds_layouts;
for (auto pred : concat_inst->_deps) {
for (auto& pred : concat_inst->_deps) {
pred_params.push_back(*pred.first->_impl_params);
preds_layouts.push_back(pred.first->_impl_params->get_output_layout());
}
@ -784,7 +784,7 @@ event::ptr primitive_inst::execute(const std::vector<event::ptr>& events) {
auto& engine = _network.get_engine();
// Need to use actual layout, not the fake aligned memory layout
auto actual_mem = engine.reinterpret_buffer(*allocated_mem, actual_input_layout);
subgraph->set_input_data(d.first->id(), actual_mem);
subgraph->set_input_data(d.first->id(), std::move(actual_mem));
}
}
GPU_DEBUG_TRACE_DETAIL << "[Start] Executing unfused subgraph of " << id() << std::endl;
@ -993,11 +993,11 @@ primitive_inst::primitive_inst(network& network, program_node const& node, bool
// input_0 -> input_1, ..., fused_dep_0, fused_dep1, ..., output_0, output_1, ...
// For each tensor we save max_rank dimensions in [bfvuwzyx] order
size_t num_dynamic_pads = 0;
for (auto in : _node->get_dependencies()) {
for (auto& in : _node->get_dependencies()) {
const auto& dyn_pad_dims = in.first->get_output_layout(false).data_padding.get_dynamic_pad_dims().sizes();
num_dynamic_pads += std::accumulate(dyn_pad_dims.begin(), dyn_pad_dims.end(), static_cast<int32_t>(0));
}
for (auto o : _node->get_output_layouts()) {
for (auto& o : _node->get_output_layouts()) {
const auto& dyn_pad_dims = o.data_padding.get_dynamic_pad_dims().sizes();
num_dynamic_pads += std::accumulate(dyn_pad_dims.begin(), dyn_pad_dims.end(), static_cast<int32_t>(0));
}

View File

@ -542,18 +542,18 @@ std::string prior_box_inst::to_string(prior_box_node const& node) {
json_composite prior_info;
prior_info.add("input id", node.input().id());
prior_info.add("iamge size", desc->img_size);
prior_info.add("variance", str_variance);
prior_info.add("variance", std::move(str_variance));
json_composite box_sizes_info;
box_sizes_info.add("min sizes", str_min_sizes);
box_sizes_info.add("max sizes", str_max_sizes);
box_sizes_info.add("min sizes", std::move(str_min_sizes));
box_sizes_info.add("max sizes", std::move(str_max_sizes));
prior_info.add("box sizes", box_sizes_info);
prior_info.add("aspect_ratio", str_aspect_ratio);
prior_info.add("flip", flip);
prior_info.add("clip", clip);
prior_info.add("scale all sizes", scale_all_sizes);
prior_info.add("fixed size", str_fixed_size);
prior_info.add("fixed size", std::move(str_fixed_size));
prior_info.add("fixed ratio", str_fixed_ratio);
prior_info.add("density", str_density);

View File

@ -155,7 +155,7 @@ program::program(engine& engine_ref,
: _engine(engine_ref),
_stream(_engine.create_stream(config)),
_config(config),
_task_executor(task_executor),
_task_executor(std::move(task_executor)),
processing_order(),
is_internal(is_internal),
is_body_program(is_body_program) {
@ -181,7 +181,7 @@ program::program(engine& engine_ref,
: _engine(engine_ref),
_stream(_engine.create_stream(config)),
_config(config),
_task_executor(task_executor),
_task_executor(std::move(task_executor)),
processing_order(),
is_internal(is_internal) {
_config.apply_user_properties(_engine.get_device_info());
@ -822,7 +822,7 @@ void program::add_intermediate(std::shared_ptr<primitive> prim,
size_t prev_idx,
bool connect_int_node_with_old_dep,
bool move_usrs_of_prev_to_node) {
add_intermediate(get_or_create(prim), next, prev_idx, connect_int_node_with_old_dep, move_usrs_of_prev_to_node);
add_intermediate(get_or_create(std::move(prim)), next, prev_idx, connect_int_node_with_old_dep, move_usrs_of_prev_to_node);
}
void program::add_intermediate(program_node& node,

View File

@ -33,7 +33,7 @@ std::string pyramid_roi_align_inst::to_string(pyramid_roi_align_node const& node
auto node_info = node.desc_to_json();
std::stringstream primitive_description;
json_composite pyramid_roi_align_info;
node_info->add("pyramid_roi_align_info", pyramid_roi_align_info);
node_info->add("pyramid_roi_align_info", std::move(pyramid_roi_align_info));
node_info->dump(primitive_description);
return primitive_description.str();
}

View File

@ -85,7 +85,7 @@ std::string space_to_depth_inst::to_string(space_to_depth_node const& node) {
json_composite space_to_depth_info;
space_to_depth_info.add("input id", input.id());
space_to_depth_info.add("mode", depth_mode);
space_to_depth_info.add("mode", std::move(depth_mode));
space_to_depth_info.add("block size", desc->block_size);
node_info->add("space_to_depth info", space_to_depth_info);

View File

@ -55,7 +55,7 @@ std::vector<layout> strided_slice_inst::calc_output_layouts(strided_slice_node c
std::vector<ShapeType> output_shapes;
std::vector<ShapeType> input_shapes = {
input0_shape,
std::move(input0_shape),
begin_shape,
end_shape,
strides_shape

View File

@ -687,7 +687,7 @@ struct base_params : public Params {
out.SetDynamicShapeOffset(offset);
if (out.is_dynamic()) {
offset += DataTensor::max_rank();
for (auto dim : out.GetDims()) {
for (auto& dim : out.GetDims()) {
if (dim.pad.is_dynamic)
offset += Tensor::Pad::NumPadOffsetsPerDim();
}

View File

@ -37,7 +37,7 @@ using namespace InferenceEngine::details;
namespace ov {
namespace intel_gpu {
Graph::Graph(InferenceEngine::CNNNetwork& network, RemoteContextImpl::Ptr context, const ExecutionConfig& config, uint16_t stream_id,
Graph::Graph(InferenceEngine::CNNNetwork& network, const RemoteContextImpl::Ptr& context, const ExecutionConfig& config, uint16_t stream_id,
InferenceEngine::InputsDataMap* inputs, InferenceEngine::OutputsDataMap* outputs)
: m_context(context)
, m_networkName(network.getName())
@ -50,7 +50,7 @@ Graph::Graph(InferenceEngine::CNNNetwork& network, RemoteContextImpl::Ptr contex
Build();
}
Graph::Graph(cldnn::BinaryInputBuffer &ib, RemoteContextImpl::Ptr context, const ExecutionConfig& config, uint16_t stream_id,
Graph::Graph(cldnn::BinaryInputBuffer &ib, const RemoteContextImpl::Ptr& context, const ExecutionConfig& config, uint16_t stream_id,
InferenceEngine::InputsDataMap* inputs, InferenceEngine::OutputsDataMap* outputs)
: m_context(context)
, m_config(config)

View File

@ -1034,7 +1034,7 @@ Blob::Ptr InferRequest::reinterpret_device_blob(Blob::Ptr data, const TensorDesc
auto dt = DataTypeFromPrecision(new_desc.getPrecision());
ov::PartialShape shape(new_desc.getDims());
auto l = cldnn::layout(shape, dt, format);
auto l = cldnn::layout(std::move(shape), dt, format);
auto remote_blob = data->as<gpu::ClBlob>();
if (!remote_blob)

View File

@ -780,7 +780,7 @@ void InferRequestLegacy::wait_dynamic() {
auto outputMemory = internal_outputs_dynamic[nb].at(outputID).get_memory();
Blob::Ptr bptr = _outputs[no.first];
copy_output_data(outputMemory, bptr, &batchOutputs[no.first][nb]);
copy_output_data(outputMemory, std::move(bptr), &batchOutputs[no.first][nb]);
}
}
}
@ -945,7 +945,7 @@ void InferRequestLegacy::allocate_inputs() {
TensorDesc desc_fp32 = desc;
desc_fp32.setPrecision(Precision::FP32);
auto blobPtr = create_device_blob(desc_fp32, litr->second);
_deviceInputs[name] = blobPtr;
_deviceInputs[name] = std::move(blobPtr);
Blob::Ptr inputBlob = create_host_blob(desc);
_inputs[name] = inputBlob;
} else {
@ -1008,7 +1008,7 @@ void InferRequestLegacy::allocate_outputs() {
device_blob_desc.setPrecision(Precision::FP32);
auto host_blob = create_host_blob(desc);
_outputs[no.first] = host_blob;
_outputs[no.first] = std::move(host_blob);
auto device_blob = create_device_blob(device_blob_desc, output_layout);
_deviceOutputs[no.first] = device_blob;
} else {
@ -1036,7 +1036,7 @@ void InferRequestLegacy::allocate_outputs_dynamic() {
Blob::Ptr outputBlob = create_host_blob(desc);
_outputs[no.first] = outputBlob;
outputsMap[no.first] = outputID;
outputsMap[no.first] = std::move(outputID);
}
}
@ -1151,7 +1151,7 @@ void InferRequestLegacy::prepare_output(const cldnn::primitive_id& outputName, B
IE_THROW(NotAllocated) << str_output_not_allocated;
}
auto outputMem = impl->get_memory();
_nw_ptr->set_output_memory(internalName, outputMem);
_nw_ptr->set_output_memory(internalName, std::move(outputMem));
}
InferenceEngine::Blob::Ptr InferRequestLegacy::create_device_blob(const InferenceEngine::TensorDesc& desc, const cldnn::layout& layout) {

View File

@ -102,7 +102,8 @@ void CreateGatherOpBase(Program& p, const std::shared_ptr<T>& op, const int64_t
const auto& indices_node = indices.get_node_shared_ptr();
auto indices_constant = std::dynamic_pointer_cast<ngraph::op::v0::Constant>(indices_node);
float result = 0.f;
ov::op::util::get_single_value(indices_constant, result);
OPENVINO_ASSERT(ov::op::util::get_single_value(indices_constant, result),
"Unsupported indices node in ", op->get_friendly_name(), " (", op->get_type_name(), ")");
// Set tensors for crop shape and offset
InferenceEngine::SizeVector start_offset(input_shape.size());

View File

@ -140,7 +140,7 @@ static void CreateLoopOp(Program& p, const std::shared_ptr<Loop>& op) {
const cldnn::primitive_id num_iteration_id = layerName + "_numIteration";
{
cldnn::mutable_data num_iteration = CreateScalarData<cldnn::mutable_data>(p, num_iteration_id, 0);
p.add_primitive(*op, num_iteration);
p.add_primitive(*op, std::move(num_iteration));
}
// set output mapping
@ -154,7 +154,7 @@ static void CreateLoopOp(Program& p, const std::shared_ptr<Loop>& op) {
std::string external_id;
if (output_idx > 0) {
cldnn::mutable_data output_data = CreateAdditionalOutputData(p, op, layerNameWithIndex, layerName, output_idx);
p.add_primitive(*op, output_data);
p.add_primitive(*op, std::move(output_data));
external_id = layerNameWithIndex;
} else {
external_id = layerName;

View File

@ -42,7 +42,7 @@ static cldnn::mutable_data CreateAdditionalOutputData(Program &p, const std::sha
const auto tensor = tensor_from_dims(op->get_output_shape(output_idx));
cldnn::layout output_layout = cldnn::layout(precision, format, tensor);
auto mem = p.get_engine().allocate_memory(output_layout);
auto md = cldnn::mutable_data(id, {cldnn::input_info(input)}, mem); // cldnn::data cannot set dependency
auto md = cldnn::mutable_data(id, {cldnn::input_info(input)}, std::move(mem)); // cldnn::data cannot set dependency
return md;
}
@ -119,7 +119,7 @@ static void CreateTensorIteratorOp(Program &p, const std::shared_ptr<TensorItera
const cldnn::primitive_id execution_condition_id = layerName + "_initialExecutionCondition";
{
cldnn::mutable_data execution_condition = CreateScalarData<cldnn::mutable_data>(p, execution_condition_id, 1);
p.add_primitive(*op, execution_condition);
p.add_primitive(*op, std::move(execution_condition));
}
const cldnn::primitive_id num_iteration_id = layerName + "_numIteration";
{
@ -138,7 +138,7 @@ static void CreateTensorIteratorOp(Program &p, const std::shared_ptr<TensorItera
std::string external_id;
if (output_idx > 0) {
cldnn::mutable_data output_data = CreateAdditionalOutputData(p, op, layerNameWithIndex, layerName, output_idx);
p.add_primitive(*op, output_data);
p.add_primitive(*op, std::move(output_data));
external_id = layerNameWithIndex;
} else {
p.primitive_ids[layerNameWithIndex] = layerName;

View File

@ -20,7 +20,7 @@ RemoteContextImpl::RemoteContextImpl(std::string device_name, std::vector<cldnn:
: m_va_display(nullptr)
, m_external_queue(nullptr)
, m_type(ContextType::OCL)
, m_device_name(device_name)
, m_device_name(std::move(device_name))
, m_memory_cache(cache_capacity) {
OPENVINO_ASSERT(devices.size() == 1, "[GPU] Currently context can be created for single device only");
// TODO: Parameterize this based on plugin config and compilation options

View File

@ -121,7 +121,7 @@ public:
std::vector<std::string> get_cached_kernel_ids(const std::vector<kernel::ptr>& kernels) const;
void add_to_cached_kernels(const std::vector<kernel::ptr>& kernels);
size_t get_kernel_batch_hash(const kernel_impl_params params) const {
size_t get_kernel_batch_hash(const kernel_impl_params& params) const {
if (_kernel_batch_hash.find(params) != _kernel_batch_hash.end())
return _kernel_batch_hash.at(params);
return 0;