Refactored with single dispatch generic function implementation (#19958)

* Refactored with single dispatch generic function implementation

* Resolved mypy linting warnings

* Update src/bindings/python/src/openvino/preprocess/torchvision/torchvision_preprocessing.py

* Update src/bindings/python/src/openvino/preprocess/torchvision/torchvision_preprocessing.py

---------

Co-authored-by: Przemyslaw Wysocki <przemyslaw.wysocki@intel.com>
This commit is contained in:
Mahimai Raja J 2023-09-25 18:02:22 +05:30 committed by GitHub
parent 0dd54c8a0e
commit 39f6cbf259
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -10,6 +10,7 @@ import copy
import numpy as np
from typing import List, Dict
from abc import ABCMeta, abstractmethod
from functools import singledispatch
from typing import Callable, Any, Union, Tuple
from typing import Sequence as SequenceType
from collections.abc import Sequence
@ -46,15 +47,22 @@ TORCHTYPE_TO_OVTYPE = {
}
@singledispatch
def _setup_size(size: Any, error_msg: str) -> SequenceType[int]:
# TODO: refactor into @singledispatch once Python 3.7 support is dropped
if isinstance(size, numbers.Number):
return int(size), int(size) # type: ignore
if isinstance(size, Sequence):
if len(size) == 1:
return size[0], size[0]
elif len(size) == 2:
return size
raise ValueError(error_msg)
@_setup_size.register
def _setup_size_number(size: numbers.Number, error_msg: str) -> SequenceType[int]:
return int(size), int(size) # type: ignore
@_setup_size.register
def _setup_size_sequence(size: Sequence, error_msg: str) -> SequenceType[int]:
if len(size) == 1:
return size[0], size[0]
elif len(size) == 2:
return size
raise ValueError(error_msg)
@ -66,14 +74,19 @@ def _NHWC_to_NCHW(input_shape: List) -> List: # noqa N802
return new_shape
@singledispatch
def _to_list(transform: Callable) -> List:
# TODO: refactor into @singledispatch once Python 3.7 support is dropped
if isinstance(transform, torch.nn.Sequential):
return list(transform)
elif isinstance(transform, transforms.Compose):
return transform.transforms
else:
raise TypeError(f"Unsupported transform type: {type(transform)}")
raise TypeError(f"Unsupported transform type: {type(transform)}")
@_to_list.register
def _to_list_torch_sequential(transform: torch.nn.Sequential) -> List:
return list(transform)
@_to_list.register
def _to_list_transforms_compose(transform: transforms.Compose) -> List:
return transform.transforms
def _get_shape_layout_from_data(input_example: Union[torch.Tensor, np.ndarray, Image.Image]) -> Tuple[List, Layout]: