Merge remote-tracking branch 'upstream/master' into layer_test_common
This commit is contained in:
commit
410c703682
@ -4,6 +4,7 @@
|
||||
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <cmath>
|
||||
|
||||
#include "runtime/pwl.h"
|
||||
@ -58,7 +59,72 @@ static void insert_extra_pwl_segments(std::vector<gna_pwl_segment_t>& gna_pwl,
|
||||
}
|
||||
}
|
||||
|
||||
void make_gna_pwl(const DnnActivation fun,
|
||||
static void print_segments_header(const DnnActivation& fun) {
|
||||
gnalog() << "=========================== " << intel_dnn_activation_name[fun] <<
|
||||
" segments ===========================\n";
|
||||
gnalog() << std::setw(12) << std::setfill(' ') << "x" << std::setw(12) << std::setfill(' ') <<
|
||||
"y" << std::setw(12) << std::setfill(' ') << "slope" << std::endl;
|
||||
}
|
||||
|
||||
static void print_segment(double x, double y, double slope) {
|
||||
gnalog() << std::setw(12) << std::setfill(' ') << x << std::setw(12) << std::setfill(' ') <<
|
||||
y << std::setw(12) << std::setfill(' ') << slope << std::endl;
|
||||
}
|
||||
|
||||
static std::vector<gna_pwl_segment_t> create_multisegment_gna_pwl(const std::vector<pwl_t>& pwl,
|
||||
double in_scale,
|
||||
double out_scale,
|
||||
double min_x_val,
|
||||
double max_x_val,
|
||||
double min_y_val,
|
||||
double max_y_val,
|
||||
bool fake_quantize,
|
||||
bool add_last_seg) {
|
||||
std::vector<gna_pwl_segment_t> gna_pwl;
|
||||
|
||||
int32_t xbase = static_cast<int32_t> (INT32_MIN & XBASEMASK); // zero out the 2 lsb
|
||||
int16_t ybase = FLOAT_TO_INT16(min_y_val * out_scale);
|
||||
int16_t slope = 0;
|
||||
gna_pwl.push_back({xbase, ybase, slope});
|
||||
print_segment(xbase / in_scale, min_y_val, slope);
|
||||
|
||||
if (!fake_quantize && min_x_val > INT32_MIN / in_scale) {
|
||||
auto s = gna_slope(pwl[0].m, in_scale, out_scale);
|
||||
slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
xbase = (static_cast<int32_t>(min_x_val * in_scale) & XBASEMASK) | s.slope_scale_index;
|
||||
ybase = FLOAT_TO_INT16(min_y_val * out_scale);
|
||||
gna_pwl.push_back({xbase, ybase, slope});
|
||||
print_segment(min_x_val, min_y_val, pwl[0].m);
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < pwl.size(); ++i) {
|
||||
if (!fake_quantize && (pwl[i].alpha <= min_x_val ||
|
||||
pwl[i].alpha <= INT32_MIN / in_scale ||
|
||||
pwl[i].alpha >= max_x_val)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto s = gna_slope(pwl[i].m, in_scale, out_scale);
|
||||
xbase = ((static_cast<int32_t> (in_scale * pwl[i].alpha)) & XBASEMASK) | s.slope_scale_index;
|
||||
ybase = FLOAT_TO_INT16(pwl[i].beta * out_scale);
|
||||
slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl.push_back({xbase, ybase, slope});
|
||||
print_segment(pwl[i].alpha, pwl[i].beta, pwl[i].m);
|
||||
}
|
||||
|
||||
if (!fake_quantize && add_last_seg) {
|
||||
// insert extra segment for xvalues > u_bound
|
||||
xbase = static_cast<int32_t>(max_x_val * in_scale) & XBASEMASK;
|
||||
ybase = FLOAT_TO_INT16(max_y_val * out_scale);
|
||||
slope = 0;
|
||||
gna_pwl.push_back({xbase, ybase, slope});
|
||||
print_segment(max_x_val, max_y_val, slope);
|
||||
}
|
||||
|
||||
return gna_pwl;
|
||||
}
|
||||
|
||||
void make_gna_pwl(const DnnActivation& fun,
|
||||
const std::vector<pwl_t>& pwl,
|
||||
const double l_bound,
|
||||
const double u_bound,
|
||||
@ -73,199 +139,56 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
gnalog() << "make_gna_pwl\n";
|
||||
gnalog() << " in_scale " << in_scale << "\n";
|
||||
gnalog() << " out_scale " << out_scale << "\n";
|
||||
print_segments_header(fun);
|
||||
switch (fun) {
|
||||
case kActSigmoid:
|
||||
case kActTanh:
|
||||
case kActSoftSign: {
|
||||
auto n_segments = static_cast<int32_t> (pwl_size) + 1;
|
||||
gna_pwl.resize(n_segments);
|
||||
// insert extra segment for x values < l_bound
|
||||
gna_pwl[0].xBase = static_cast<int32_t> (INT32_MIN & XBASEMASK); // zero out the 2 lsb
|
||||
double min_x_val;
|
||||
double min_y_val;
|
||||
if (fun == kActSigmoid) {
|
||||
gnalog() << "=========================== Sigmoid Segments ===========================\n";
|
||||
auto minVal = (fun.fqParams.set && *fun.fqParams.input_low > 0) ? FLOAT_TO_INT16(*fun.fqParams.input_low * out_scale) : 0;
|
||||
gna_pwl[0].yBase = gna_pwl[1].yBase = minVal;
|
||||
gna_pwl[1].xBase = (static_cast<int32_t> (in_scale * (-pwl[0].b / pwl[0].m))) & XBASEMASK;
|
||||
min_y_val = fun.fqParams.set ? pwl[0].beta : 0;
|
||||
min_x_val = -pwl[0].b / pwl[0].m;
|
||||
} else if (fun == kActTanh) {
|
||||
gnalog() << "=========================== Tanh Segments ===========================\n";
|
||||
auto minVal = (fun.fqParams.set && *fun.fqParams.input_low > -1) ? FLOAT_TO_INT16(*fun.fqParams.input_low * out_scale) :
|
||||
static_cast<int16_t>(-1.0 * out_scale);
|
||||
gna_pwl[0].yBase = gna_pwl[1].yBase = minVal;
|
||||
gna_pwl[1].xBase = (static_cast<int32_t> (in_scale * (-1.0 - pwl[0].b) / pwl[0].m)) & XBASEMASK;
|
||||
min_y_val = fun.fqParams.set ? pwl[0].beta : -1.0;
|
||||
min_x_val = (-1.0 - pwl[0].b) / pwl[0].m;
|
||||
} else {
|
||||
gnalog() << "=========================== SoftSign Segments ===========================\n";
|
||||
auto minVal = (fun.fqParams.set && *fun.fqParams.input_low > -1) ? FLOAT_TO_INT16(*fun.fqParams.input_low * out_scale) :
|
||||
static_cast<int16_t>(-1.0 * out_scale);
|
||||
gna_pwl[0].yBase = gna_pwl[1].yBase = minVal;
|
||||
gna_pwl[1].xBase = (static_cast<int32_t> (in_scale * (-1.0 - pwl[0].b) / pwl[0].m)) & XBASEMASK;
|
||||
min_y_val = fun.fqParams.set ? pwl[0].beta : -1.0;
|
||||
min_x_val = (-1.0 - pwl[0].b) / pwl[0].m;
|
||||
}
|
||||
gna_pwl[0].slope = 0;
|
||||
|
||||
gnalog() << (gna_pwl[0].xBase) / in_scale
|
||||
<< " " << (gna_pwl[0].yBase) / out_scale
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
|
||||
s = gna_slope(pwl[0].m, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << (gna_pwl[1].xBase/in_scale)
|
||||
<< " " << (gna_pwl[1].yBase) / out_scale
|
||||
<< " " << pwl[0].m
|
||||
<< "\n";
|
||||
|
||||
for (uint32_t i = 1; i < pwl_size - 1; ++i) {
|
||||
s = gna_slope(pwl[i].m, in_scale, out_scale);
|
||||
gna_pwl[i + 1].xBase = (static_cast<int32_t> (in_scale * pwl[i].alpha)) & XBASEMASK;
|
||||
gna_pwl[i + 1].yBase = FLOAT_TO_INT16(pwl[i].beta * out_scale);
|
||||
gna_pwl[i + 1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[i + 1].xBase = gna_pwl[i + 1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << (pwl[i].alpha)
|
||||
<< " " << pwl[i].beta
|
||||
<< " " << pwl[i].m
|
||||
<< "\n";
|
||||
}
|
||||
// insert extra segment for xvalues > u_bound
|
||||
auto maxVal = (fun.fqParams.set && *fun.fqParams.input_high <= 1) ? *fun.fqParams.input_high : 1.0;
|
||||
gna_pwl[n_segments - 1].xBase =
|
||||
((uint32_t) (in_scale * (1.0 - pwl[pwl_size - 2].b) / pwl[pwl_size - 2].m)) & XBASEMASK;
|
||||
gna_pwl[n_segments - 1].yBase = FLOAT_TO_INT16(maxVal * out_scale);
|
||||
gna_pwl[n_segments - 1].slope = 0;
|
||||
|
||||
gnalog() << (gna_pwl[n_segments - 1].xBase / in_scale)
|
||||
<< " " << 1.0
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
double max_y_val = fun.fqParams.set ? pwl.back().beta : 1.0;
|
||||
double max_x_val = fun.srcFQParams.set ? u_bound : (1.0 - pwl[pwl_size - 2].b) / pwl[pwl_size - 2].m;
|
||||
gna_pwl = create_multisegment_gna_pwl(pwl, in_scale, out_scale, min_x_val, max_x_val, min_y_val, max_y_val,
|
||||
fun.fqParams.set, true);
|
||||
break;
|
||||
}
|
||||
case kActExp: {
|
||||
auto n_segments = static_cast<int32_t> (pwl_size) + 1;
|
||||
gna_pwl.resize(n_segments);
|
||||
// insert extra segment for x values < l_bound
|
||||
gna_pwl[0].xBase = static_cast<int32_t> (INT32_MIN & XBASEMASK); // zero out the 2 lsb
|
||||
gnalog() << "=========================== Exp Segments ===========================\n";
|
||||
gna_pwl[0].yBase = gna_pwl[1].yBase = 0;
|
||||
gna_pwl[1].xBase = (static_cast<int32_t> (in_scale * (-pwl[0].b / pwl[0].m))) & XBASEMASK;
|
||||
gna_pwl[0].slope = 0;
|
||||
|
||||
gnalog() << (gna_pwl[0].xBase) / in_scale
|
||||
<< " " << (gna_pwl[0].yBase) / out_scale
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
|
||||
s = gna_slope(pwl[0].m, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << ((int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale)
|
||||
<< " " << (gna_pwl[1].yBase) / out_scale
|
||||
<< " " << pwl[0].m
|
||||
<< "\n";
|
||||
|
||||
for (uint32_t i = 1; i < pwl_size - 1; ++i) {
|
||||
s = gna_slope(pwl[i].m, in_scale, out_scale);
|
||||
gna_pwl[i + 1].xBase = (static_cast<int32_t> (in_scale * pwl[i].alpha)) & XBASEMASK;
|
||||
gna_pwl[i + 1].yBase = FLOAT_TO_INT16(pwl[i].beta * out_scale);
|
||||
gna_pwl[i + 1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[i + 1].xBase = gna_pwl[i + 1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << (pwl[i].alpha)
|
||||
<< " " << pwl[i].beta
|
||||
<< " " << pwl[i].m
|
||||
<< "\n";
|
||||
}
|
||||
// insert extra segment for xvalues > u_bound
|
||||
gna_pwl[n_segments - 1].xBase =
|
||||
((uint32_t)(in_scale * (y_max/out_scale - pwl[pwl_size - 2].b) / pwl[pwl_size - 2].m)) & XBASEMASK;
|
||||
gna_pwl[n_segments - 1].yBase = y_max;
|
||||
gna_pwl[n_segments - 1].slope = 0;
|
||||
|
||||
gnalog() << (gna_pwl[n_segments - 1].xBase / in_scale)
|
||||
<< " " << 1.0
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
double min_x_val = -pwl[0].b / pwl[0].m;
|
||||
double max_x_val = (y_max/out_scale - pwl[pwl_size - 2].b) / pwl[pwl_size - 2].m;
|
||||
double min_y_val = fun.fqParams.set ? pwl[0].beta : 0;
|
||||
double max_y_val = fun.fqParams.set ? pwl.front().beta : y_max / out_scale;
|
||||
gna_pwl = create_multisegment_gna_pwl(pwl, in_scale, out_scale, min_x_val, max_x_val, min_y_val, max_y_val,
|
||||
fun.fqParams.set, true);
|
||||
break;
|
||||
}
|
||||
case kActLog: {
|
||||
auto n_segments = static_cast<int32_t> (pwl_size);
|
||||
gna_pwl.resize(n_segments);
|
||||
// insert extra segment for x values < l_bound
|
||||
gna_pwl[0].xBase = static_cast<int32_t> (INT32_MIN & XBASEMASK); // zero out the 2 lsb
|
||||
gnalog() << "=========================== Log Segments ===========================\n";
|
||||
gna_pwl[0].yBase = gna_pwl[1].yBase = y_min;
|
||||
gna_pwl[1].xBase = (static_cast<int32_t> (1 + ~XBASEMASK)); // smallest representable value
|
||||
gna_pwl[0].slope = 0;
|
||||
|
||||
gnalog() << gna_pwl[0].xBase / in_scale
|
||||
<< " " << (gna_pwl[0].yBase) / out_scale
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
|
||||
s = gna_slope(pwl[0].m, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << ((int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale)
|
||||
<< " " << (gna_pwl[1].yBase) / out_scale
|
||||
<< " " << pwl[0].m
|
||||
<< "\n";
|
||||
|
||||
for (uint32_t i = 1; i < pwl_size - 1; ++i) {
|
||||
s = gna_slope(pwl[i].m, in_scale, out_scale);
|
||||
gna_pwl[i + 1].xBase = (static_cast<int32_t> (in_scale * pwl[i].alpha)) & XBASEMASK;
|
||||
gna_pwl[i + 1].yBase = FLOAT_TO_INT16(pwl[i].beta * out_scale);
|
||||
gna_pwl[i + 1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[i + 1].xBase = gna_pwl[i + 1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << (pwl[i].alpha)
|
||||
<< " " << pwl[i].beta
|
||||
<< " " << pwl[i].m
|
||||
<< "\n";
|
||||
}
|
||||
double min_x_val = 1 + ~XBASEMASK;
|
||||
double max_x_val = INT32_MAX / in_scale;
|
||||
double min_y_val = y_min / out_scale;
|
||||
double max_y_val = y_max / out_scale;
|
||||
gna_pwl = create_multisegment_gna_pwl(pwl, in_scale, out_scale, min_x_val, max_x_val, min_y_val, max_y_val,
|
||||
fun.fqParams.set, false);
|
||||
break;
|
||||
}
|
||||
case kActNegLog:
|
||||
case kActNegHalfLog: {
|
||||
auto n_segments = static_cast<int32_t> (pwl_size);
|
||||
gna_pwl.resize(n_segments);
|
||||
// insert extra segment for x values < l_bound
|
||||
gna_pwl[0].xBase = static_cast<int32_t> (INT32_MIN & XBASEMASK); // zero out the 2 lsb
|
||||
if (fun == kActNegHalfLog)
|
||||
gnalog() << "=========================== NegHalfLog Segments ===========================\n";
|
||||
else
|
||||
gnalog() << "=========================== NegLog Segments ===========================\n";
|
||||
gna_pwl[0].yBase = gna_pwl[1].yBase = y_max;
|
||||
gna_pwl[1].xBase = (static_cast<int32_t> (1 + ~XBASEMASK)); // smallest representable value
|
||||
gna_pwl[0].slope = 0;
|
||||
|
||||
gnalog() << gna_pwl[0].xBase / in_scale
|
||||
<< " " << (gna_pwl[0].yBase) / out_scale
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
|
||||
s = gna_slope(pwl[0].m, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << ((int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale)
|
||||
<< " " << (gna_pwl[1].yBase) / out_scale
|
||||
<< " " << pwl[0].m
|
||||
<< "\n";
|
||||
|
||||
for (uint32_t i = 1; i < pwl_size - 1; ++i) {
|
||||
s = gna_slope(pwl[i].m, in_scale, out_scale);
|
||||
gna_pwl[i + 1].xBase = (static_cast<int32_t> (in_scale * pwl[i].alpha)) & XBASEMASK;
|
||||
gna_pwl[i + 1].yBase = FLOAT_TO_INT16(pwl[i].beta * out_scale);
|
||||
gna_pwl[i + 1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[i + 1].xBase = gna_pwl[i + 1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << (pwl[i].alpha)
|
||||
<< " " << pwl[i].beta
|
||||
<< " " << pwl[i].m
|
||||
<< "\n";
|
||||
}
|
||||
double min_x_val = 1 + ~XBASEMASK;
|
||||
double max_x_val = INT32_MAX / in_scale;
|
||||
double min_y_val = y_max / out_scale;
|
||||
double max_y_val = y_min / out_scale;
|
||||
gna_pwl = create_multisegment_gna_pwl(pwl, in_scale, out_scale, min_x_val, max_x_val, min_y_val, max_y_val,
|
||||
fun.fqParams.set, false);
|
||||
break;
|
||||
}
|
||||
case kActRelu:
|
||||
@ -273,10 +196,6 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
auto n_segments = 2;
|
||||
gna_pwl.resize(n_segments);
|
||||
|
||||
if (fun == kActRelu)
|
||||
gnalog() << "=========================== ReLU Segments ===========================\n";
|
||||
else
|
||||
gnalog() << "=========================== LeakyReLU Segments ======================\n";
|
||||
int32_t x_lower = INT32_MIN;
|
||||
int32_t x_upper = INT32_MAX;
|
||||
int32_t y_lower = y_min;
|
||||
@ -297,19 +216,16 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
gna_pwl[0].xBase = (x_lower & XBASEMASK) | s.slope_scale_index; // zero out the 2 lsb
|
||||
gna_pwl[0].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
|
||||
gnalog() << (int32_t)(gna_pwl[0].xBase & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[0].yBase / out_scale
|
||||
<< " " << (gna_pwl[0].slope * in_scale) / (out_scale*s.slope_scale)
|
||||
<< "\n";
|
||||
print_segment((int32_t)(gna_pwl[0].xBase & XBASEMASK) / in_scale,
|
||||
gna_pwl[0].yBase / out_scale,
|
||||
(gna_pwl[0].slope * in_scale) / (out_scale*s.slope_scale));
|
||||
|
||||
gna_pwl[1].xBase = 0;
|
||||
gna_pwl[1].yBase = 0;
|
||||
s = gna_slope(1.0, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
gnalog() << 0.0
|
||||
<< " " << 0.0
|
||||
<< " " << (gna_pwl[1].slope * in_scale) / (out_scale*s.slope_scale)
|
||||
<< "\n";
|
||||
print_segment(0.0, 0.0, (gna_pwl[1].slope * in_scale) / (out_scale*s.slope_scale));
|
||||
|
||||
if (fun.fqParams.set) { // need a right segment
|
||||
gna_pwl.push_back({
|
||||
@ -317,10 +233,7 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
y_upper,
|
||||
0 });
|
||||
|
||||
gnalog() << (x_upper & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[n_segments].yBase / out_scale
|
||||
<< " " << 0
|
||||
<< "\n";
|
||||
print_segment((x_upper & XBASEMASK) / in_scale, gna_pwl[n_segments].yBase / out_scale, 0.0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -328,34 +241,28 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
auto n_segments = 3;
|
||||
gna_pwl.resize(n_segments);
|
||||
|
||||
gnalog() << "=========================== Sign Segments ===========================\n";
|
||||
int32_t x_lower = INT32_MIN;
|
||||
int16_t y_lower = static_cast<int16_t>(-1.0 * out_scale);
|
||||
gna_pwl[0].yBase = y_lower;
|
||||
gna_pwl[0].xBase = (x_lower & XBASEMASK); // zero out the 2 lsb
|
||||
gna_pwl[0].slope = 0;
|
||||
|
||||
gnalog() << gna_pwl[0].xBase / in_scale
|
||||
<< " " << gna_pwl[0].yBase / out_scale
|
||||
<< " " << (gna_pwl[0].slope * in_scale) / (out_scale*s.slope_scale)
|
||||
<< "\n";
|
||||
print_segment(gna_pwl[0].xBase / in_scale, gna_pwl[0].yBase / out_scale,
|
||||
(gna_pwl[0].slope * in_scale) / (out_scale*s.slope_scale));
|
||||
gna_pwl[1].xBase = -1;
|
||||
gna_pwl[1].yBase = 0;
|
||||
gna_pwl[1].slope = 0;
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase & XBASEMASK;
|
||||
gnalog() << gna_pwl[1].xBase / in_scale
|
||||
<< " " << gna_pwl[1].yBase / out_scale
|
||||
<< " " << (gna_pwl[1].slope * in_scale) / (out_scale*s.slope_scale)
|
||||
<< "\n";
|
||||
print_segment(gna_pwl[1].xBase / in_scale, gna_pwl[1].yBase / out_scale,
|
||||
(gna_pwl[1].slope * in_scale) / (out_scale*s.slope_scale));
|
||||
|
||||
gna_pwl[2].xBase = 1 + ~XBASEMASK; // smallest representable positive number
|
||||
gna_pwl[2].yBase = static_cast<int16_t>(1.0 * out_scale);
|
||||
s = gna_slope(1.0, in_scale, out_scale);
|
||||
gna_pwl[2].slope = 0;
|
||||
gna_pwl[2].xBase = gna_pwl[2].xBase & XBASEMASK;
|
||||
gnalog() << gna_pwl[2].xBase / in_scale
|
||||
<< " " << gna_pwl[2].yBase / out_scale
|
||||
<< " " << (gna_pwl[2].slope * in_scale) / (out_scale*s.slope_scale)
|
||||
<< "\n";
|
||||
print_segment(gna_pwl[2].xBase / in_scale, gna_pwl[2].yBase / out_scale,
|
||||
(gna_pwl[2].slope * in_scale) / (out_scale*s.slope_scale));
|
||||
break;
|
||||
}
|
||||
case kActIdentity:
|
||||
@ -373,7 +280,6 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
}
|
||||
auto n_segments = 2;
|
||||
if (fun == kActKaldiLstmClipping) {
|
||||
gnalog() << "=========================== Clipping Segments ===========================\n";
|
||||
if (x_lower < l_bound * in_scale) {
|
||||
if (y_lower < l_bound * out_scale) {
|
||||
x_lower = FLOAT_TO_INT32(l_bound * in_scale);
|
||||
@ -391,42 +297,32 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
}
|
||||
}
|
||||
} else if (fun == kActIdentity) {
|
||||
gnalog() << "=========================== Identity Segments ===========================\n";
|
||||
if (x_lower < y_lower * in_scale / out_scale) x_lower = FLOAT_TO_INT32(y_lower * in_scale / out_scale);
|
||||
if (x_upper > y_upper * in_scale / out_scale) x_upper = FLOAT_TO_INT32(y_upper * in_scale / out_scale);
|
||||
if (y_lower < x_lower * out_scale / in_scale) y_lower = FLOAT_TO_INT16(x_lower * out_scale / in_scale);
|
||||
if (y_upper > x_upper * out_scale / in_scale) y_upper = FLOAT_TO_INT16(x_upper * out_scale / in_scale);
|
||||
} else if (fun == kActFakeQuantize) {
|
||||
gnalog() << "=========================== Fake Quantize Segments ===========================\n";
|
||||
}
|
||||
|
||||
gna_pwl.resize(n_segments);
|
||||
gna_pwl[0].xBase = INT32_MIN & XBASEMASK; // zero out the 2 lsb
|
||||
gna_pwl[0].yBase = y_lower;
|
||||
gna_pwl[0].slope = 0;
|
||||
gnalog() << gna_pwl[0].xBase / in_scale
|
||||
<< " " << gna_pwl[0].yBase / out_scale
|
||||
<< " " << 0
|
||||
<< "\n";
|
||||
print_segment(gna_pwl[0].xBase / in_scale, gna_pwl[0].yBase / out_scale, 0.0);
|
||||
|
||||
gna_pwl[1].xBase = x_lower & XBASEMASK; // zero out the 2 lsb
|
||||
gna_pwl[1].yBase = y_lower;
|
||||
s = gna_slope(1.0, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
gnalog() << (int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[1].yBase / out_scale
|
||||
<< " " << 1.0
|
||||
<< "\n";
|
||||
print_segment((int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale, gna_pwl[1].yBase / out_scale, 1.0);
|
||||
|
||||
if (INT32_MAX > x_upper) { // need a right segment
|
||||
gna_pwl.push_back({
|
||||
static_cast<int32_t>(x_upper & XBASEMASK), // zero out the 2 lsb
|
||||
y_upper,
|
||||
0 });
|
||||
|
||||
gnalog() << (x_upper & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[n_segments].yBase / out_scale
|
||||
<< " " << 0
|
||||
<< "\n";
|
||||
print_segment((x_upper & XBASEMASK) / in_scale, gna_pwl[n_segments].yBase / out_scale, 0.0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -440,7 +336,6 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
if (y_upper > x_upper * out_scale / in_scale) y_upper = FLOAT_TO_INT16(x_upper * out_scale / in_scale);
|
||||
if (x_upper > y_upper * in_scale / out_scale) x_upper = FLOAT_TO_INT32(y_upper * in_scale / out_scale);
|
||||
|
||||
gnalog() << "=========================== Abs Segments ===========================\n";
|
||||
if (y_upper == y_max) { // saturation at ends - need one more segment
|
||||
n_segments += 1;
|
||||
gna_pwl.resize(n_segments);
|
||||
@ -457,19 +352,14 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
s = gna_slope(-1.0, in_scale, out_scale);
|
||||
gna_pwl[i].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[i].xBase = gna_pwl[i].xBase | s.slope_scale_index;
|
||||
gnalog() << (int32_t)(gna_pwl[i].xBase & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[i].yBase / out_scale
|
||||
<< " " << -1.0
|
||||
<< "\n";
|
||||
print_segment((int32_t)(gna_pwl[i].xBase & XBASEMASK) / in_scale, gna_pwl[i].yBase / out_scale, -1.0);
|
||||
|
||||
gna_pwl[i + 1].xBase = 0;
|
||||
gna_pwl[i + 1].yBase = 0;
|
||||
s = gna_slope(1.0, in_scale, out_scale);
|
||||
gna_pwl[i + 1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[i + 1].xBase = gna_pwl[i + 1].xBase | s.slope_scale_index;
|
||||
gnalog() << (int32_t)(gna_pwl[i + 1].xBase & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[i + 1].yBase / out_scale
|
||||
<< " " << 1.0
|
||||
<< "\n";
|
||||
print_segment((int32_t)(gna_pwl[i + 1].xBase & XBASEMASK) / in_scale, gna_pwl[i + 1].yBase / out_scale, 1.0);
|
||||
break;
|
||||
}
|
||||
case kActPow: {
|
||||
@ -551,11 +441,7 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
gna_pwl[0].xBase = INT32_MIN & XBASEMASK; // zero out the 2 lsb
|
||||
gna_pwl[0].yBase = y_lower;
|
||||
gna_pwl[0].slope = 0;
|
||||
gnalog() << gna_pwl[0].xBase / in_scale
|
||||
<< " " << gna_pwl[0].yBase / out_scale
|
||||
<< " " << 0
|
||||
<< "\n";
|
||||
|
||||
print_segment(gna_pwl[0].xBase / in_scale, gna_pwl[0].yBase / out_scale, 0.0);
|
||||
|
||||
gna_pwl[1].xBase = x_lower & XBASEMASK; // zero out the 2 lsb
|
||||
gna_pwl[1].yBase = y_lower;
|
||||
@ -563,73 +449,27 @@ void make_gna_pwl(const DnnActivation fun,
|
||||
s = gna_slope(slope, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
gnalog() << (int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[1].yBase / out_scale
|
||||
<< " " << 1.0
|
||||
<< "\n";
|
||||
print_segment((int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale, gna_pwl[1].yBase / out_scale, 1.0);
|
||||
if (INT32_MAX > x_upper) { // need a right segment
|
||||
gna_pwl.push_back({
|
||||
static_cast<int32_t>(x_upper & XBASEMASK), // zero out the 2 lsb
|
||||
y_upper,
|
||||
0 });
|
||||
|
||||
gnalog() << (x_upper & XBASEMASK) / in_scale
|
||||
<< " " << gna_pwl[2].yBase / out_scale
|
||||
<< " " << 0
|
||||
<< "\n";
|
||||
print_segment((x_upper & XBASEMASK) / in_scale, gna_pwl[2].yBase / out_scale, 0.0);
|
||||
}
|
||||
} else {
|
||||
auto n_segments = static_cast<int32_t> (pwl_size) + 1;
|
||||
gna_pwl.resize(n_segments);
|
||||
// insert extra segment for x values < l_bound
|
||||
gna_pwl[0].xBase = static_cast<int32_t> (INT32_MIN & XBASEMASK); // zero out the 2 lsb
|
||||
gnalog() << "=========================== Exp Segments ===========================\n";
|
||||
gna_pwl[0].yBase = gna_pwl[1].yBase = 0;
|
||||
gna_pwl[1].xBase = (static_cast<int32_t> (in_scale * (-pwl[0].b / pwl[0].m))) & XBASEMASK;
|
||||
gna_pwl[0].slope = 0;
|
||||
|
||||
gnalog() << (gna_pwl[0].xBase) / in_scale
|
||||
<< " " << (gna_pwl[0].yBase) / out_scale
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
|
||||
s = gna_slope(pwl[0].m, in_scale, out_scale);
|
||||
gna_pwl[1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[1].xBase = gna_pwl[1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << ((int32_t)(gna_pwl[1].xBase & XBASEMASK) / in_scale)
|
||||
<< " " << (gna_pwl[1].yBase) / out_scale
|
||||
<< " " << pwl[0].m
|
||||
<< "\n";
|
||||
|
||||
for (uint32_t i = 1; i < pwl_size - 1; ++i) {
|
||||
s = gna_slope(pwl[i].m, in_scale, out_scale);
|
||||
gna_pwl[i + 1].xBase = (static_cast<int32_t> (in_scale * pwl[i].alpha)) & XBASEMASK;
|
||||
gna_pwl[i + 1].yBase = FLOAT_TO_INT16(pwl[i].beta * out_scale);
|
||||
gna_pwl[i + 1].slope = FLOAT_TO_INT16(s.slope * s.slope_scale);
|
||||
gna_pwl[i + 1].xBase = gna_pwl[i + 1].xBase | s.slope_scale_index;
|
||||
|
||||
gnalog() << (pwl[i].alpha)
|
||||
<< " " << pwl[i].beta
|
||||
<< " " << pwl[i].m
|
||||
<< "\n";
|
||||
}
|
||||
// insert extra segment for xvalues > u_bound
|
||||
gna_pwl[n_segments - 1].xBase =
|
||||
((uint32_t)(in_scale * (y_max / out_scale - pwl[pwl_size - 2].b) / pwl[pwl_size - 2].m)) & XBASEMASK;
|
||||
gna_pwl[n_segments - 1].yBase = y_max;
|
||||
gna_pwl[n_segments - 1].slope = 0;
|
||||
|
||||
gnalog() << (gna_pwl[n_segments - 1].xBase / in_scale)
|
||||
<< " " << 1.0
|
||||
<< " " << 0.0
|
||||
<< "\n";
|
||||
double min_x_val = -pwl[0].b / pwl[0].m;
|
||||
double max_x_val = (y_max/out_scale - pwl[pwl_size - 2].b) / pwl[pwl_size - 2].m;
|
||||
double min_y_val = fun.fqParams.set ? pwl[0].beta : 0;
|
||||
double max_y_val = fun.fqParams.set ? pwl.front().beta : y_max / out_scale;
|
||||
gna_pwl = create_multisegment_gna_pwl(pwl, in_scale, out_scale, min_x_val, max_x_val, min_y_val, max_y_val,
|
||||
fun.fqParams.set, true);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
gnalog() << "Unexpected function activation!\n";
|
||||
THROW_GNA_EXCEPTION << "Unexpected function activation!" << fun;
|
||||
}
|
||||
insert_extra_pwl_segments(gna_pwl, y_min, y_max);
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include <vector>
|
||||
#include "runtime/pwl.h"
|
||||
|
||||
void make_gna_pwl(const DnnActivation fun,
|
||||
void make_gna_pwl(const DnnActivation& fun,
|
||||
const std::vector<pwl_t>& pwl,
|
||||
const double l_bound,
|
||||
const double u_bound,
|
||||
|
@ -0,0 +1,167 @@
|
||||
// Copyright (C) 2021 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include <ie_core.hpp>
|
||||
|
||||
#include "common_test_utils/common_utils.hpp"
|
||||
#include "functional_test_utils/plugin_cache.hpp"
|
||||
#include "shared_test_classes/base/layer_test_utils.hpp"
|
||||
#include "functional_test_utils/blob_utils.hpp"
|
||||
#include "ngraph_functions/utils/ngraph_helpers.hpp"
|
||||
#include "ngraph_functions/builders.hpp"
|
||||
|
||||
#include "ngraph_functions/pass/convert_prc.hpp"
|
||||
|
||||
static std::map<ngraph::helpers::ActivationTypes, std::string> activationNames = {
|
||||
{ngraph::helpers::ActivationTypes::Sigmoid, "Sigmoid"},
|
||||
{ngraph::helpers::ActivationTypes::Tanh, "Tanh"},
|
||||
{ngraph::helpers::ActivationTypes::Relu, "Relu"},
|
||||
{ngraph::helpers::ActivationTypes::Exp, "Exp"},
|
||||
{ngraph::helpers::ActivationTypes::Log, "Log"},
|
||||
{ngraph::helpers::ActivationTypes::Sign, "Sign"},
|
||||
{ngraph::helpers::ActivationTypes::Abs, "Abs"}
|
||||
};
|
||||
|
||||
typedef std::tuple<
|
||||
InferenceEngine::Precision, // Network Precision
|
||||
std::string, // Target Device
|
||||
std::map<std::string, std::string>, // Configuration
|
||||
std::pair<float, float>, // Input values
|
||||
ngraph::helpers::ActivationTypes // Activation type
|
||||
> eltwiseActFqParams;
|
||||
|
||||
namespace LayerTestsDefinitions {
|
||||
|
||||
class EltwiseActFqTest : public testing::WithParamInterface<eltwiseActFqParams>,
|
||||
public LayerTestsUtils::LayerTestsCommon {
|
||||
public:
|
||||
static std::string getTestCaseName(testing::TestParamInfo<eltwiseActFqParams> obj) {
|
||||
InferenceEngine::Precision netPrecision;
|
||||
std::string targetDevice;
|
||||
std::map<std::string, std::string> configuration;
|
||||
std::pair<float, float> inputValues;
|
||||
ngraph::helpers::ActivationTypes act;
|
||||
std::tie(netPrecision, targetDevice, configuration, inputValues, act) = obj.param;
|
||||
|
||||
std::ostringstream result;
|
||||
result << "netPRC=" << netPrecision.name() << "_";
|
||||
result << "targetDevice=" << targetDevice << "_";
|
||||
for (auto const& configItem : configuration) {
|
||||
result << "_configItem=" << configItem.first << "_" << configItem.second;
|
||||
}
|
||||
result << "_range=(" << inputValues.first << ", " << inputValues.second << ")";
|
||||
result << "_act=" << activationNames[act];
|
||||
|
||||
return result.str();
|
||||
}
|
||||
|
||||
InferenceEngine::Blob::Ptr GenerateInput(const InferenceEngine::InputInfo& info) const override {
|
||||
InferenceEngine::Blob::Ptr blob = make_blob_with_precision(info.getTensorDesc());
|
||||
blob->allocate();
|
||||
|
||||
auto* rawBlobDataPtr = blob->buffer().as<float*>();
|
||||
std::vector<float> values = CommonTestUtils::generate_float_numbers(blob->size(), inputDataMin, inputDataMax);
|
||||
for (size_t i = 0; i < blob->size(); i++) {
|
||||
rawBlobDataPtr[i] = values[i];
|
||||
}
|
||||
return blob;
|
||||
}
|
||||
|
||||
protected:
|
||||
void SetUp() override {
|
||||
InferenceEngine::Precision netPrecision;
|
||||
std::pair<float, float> inputValues;
|
||||
ngraph::helpers::ActivationTypes act;
|
||||
|
||||
std::tie(netPrecision, targetDevice, configuration, inputValues, act) = this->GetParam();
|
||||
std::tie(inputDataMin, inputDataMax) = inputValues;
|
||||
if (act == ngraph::helpers::ActivationTypes::Log) {
|
||||
// clamp not positive values
|
||||
inputDataMin = 1.0e-3;
|
||||
}
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
|
||||
const ngraph::Shape shape = {1, 128};
|
||||
auto params = ngraph::builder::makeParams(ngPrc, {shape});
|
||||
|
||||
auto lowNodeIn = ngraph::builder::makeConstant<float>(ngPrc, {1}, { 100 * inputDataMin });
|
||||
auto highNodeIn = ngraph::builder::makeConstant<float>(ngPrc, {1}, { 100 * inputDataMax });
|
||||
auto fqIn = std::make_shared<ngraph::opset8::FakeQuantize>(params[0], lowNodeIn, highNodeIn,
|
||||
lowNodeIn, highNodeIn, levels16);
|
||||
|
||||
auto constant = ngraph::builder::makeConstant<float>(ngPrc, shape,
|
||||
CommonTestUtils::generate_float_numbers(shape[1], inputDataMin, inputDataMax));
|
||||
auto add = std::make_shared<ngraph::opset8::Add>(fqIn, constant);
|
||||
|
||||
auto lowNode = ngraph::builder::makeConstant<float>(ngPrc, {1}, { 2 * inputDataMin });
|
||||
auto highNode = ngraph::builder::makeConstant<float>(ngPrc, {1}, { 2 * inputDataMax });
|
||||
auto fq = std::make_shared<ngraph::opset8::FakeQuantize>(add, lowNode, highNode,
|
||||
lowNode, highNode, levels32);
|
||||
|
||||
auto tanh = ngraph::builder::makeActivation(fq, ngPrc, act);
|
||||
|
||||
auto lowNodeOut = ngraph::builder::makeConstant<float>(ngPrc, {1}, { std::tanh(2 * inputDataMin) });
|
||||
auto highNodeOut = ngraph::builder::makeConstant<float>(ngPrc, {1}, { std::tanh(2 * inputDataMax) });
|
||||
auto fqOut = std::make_shared<ngraph::opset8::FakeQuantize>(tanh, lowNodeOut, highNodeOut,
|
||||
lowNodeOut, highNodeOut, levels16);
|
||||
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset8::Result>(fqOut)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "TanhFq");
|
||||
}
|
||||
|
||||
float inputDataMax = 1.0;
|
||||
float inputDataMin = -1.0;
|
||||
const size_t levels16 = std::numeric_limits<uint16_t>::max();
|
||||
const size_t levels32 = std::numeric_limits<uint32_t>::max();
|
||||
// to reproduce the problem with quite big distance between min int and min value from stats
|
||||
const size_t sf_reducer = 100;
|
||||
};
|
||||
|
||||
TEST_P(EltwiseActFqTest, CompareWithRefImpl) {
|
||||
Run();
|
||||
};
|
||||
|
||||
const std::vector<InferenceEngine::Precision> netPrecisions = {
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Precision::FP16
|
||||
};
|
||||
|
||||
const std::vector<std::map<std::string, std::string>> configs = {
|
||||
{
|
||||
{"GNA_DEVICE_MODE", "GNA_SW_EXACT"},
|
||||
}
|
||||
};
|
||||
|
||||
const std::vector<std::pair<float, float>> inputValues = {
|
||||
{-10.0, 10.0},
|
||||
{-5.0, 5.0},
|
||||
{-1.0, 1.0},
|
||||
{-0.04, 0.04}
|
||||
};
|
||||
|
||||
const std::vector<ngraph::helpers::ActivationTypes> activationTypes = {
|
||||
ngraph::helpers::ActivationTypes::Sigmoid,
|
||||
ngraph::helpers::ActivationTypes::Tanh,
|
||||
ngraph::helpers::ActivationTypes::Relu,
|
||||
ngraph::helpers::ActivationTypes::Exp,
|
||||
ngraph::helpers::ActivationTypes::Log,
|
||||
ngraph::helpers::ActivationTypes::Sign,
|
||||
ngraph::helpers::ActivationTypes::Abs
|
||||
};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(smoke_base, EltwiseActFqTest,
|
||||
::testing::Combine(
|
||||
::testing::ValuesIn(netPrecisions),
|
||||
::testing::Values(CommonTestUtils::DEVICE_GNA),
|
||||
::testing::ValuesIn(configs),
|
||||
::testing::ValuesIn(inputValues),
|
||||
::testing::ValuesIn(activationTypes)),
|
||||
EltwiseActFqTest::getTestCaseName);
|
||||
} // namespace LayerTestsDefinitions
|
@ -19,6 +19,8 @@ std::vector<std::string> disabledTestPatterns() {
|
||||
// TODO: FIX BUG 32210
|
||||
R"(.*ActivationLayerTest.CompareWithRefs/(Sigmoid|Tanh|Exp|Log).*)",
|
||||
R"(.*ActivationFQSubgraph.*activation=(Exp|Log).*)",
|
||||
// TODO: Issue 68586
|
||||
R"(.*EltwiseActFqTest.*act=Log.*)",
|
||||
// TODO: Issue 32542
|
||||
R"(.*(EltwiseLayerTest).*eltwiseOpType=(Sum|Sub).*opType=SCALAR.*)",
|
||||
R"(.*(EltwiseLayerTest).*eltwiseOpType=Prod.*secondaryInputType=PARAMETER.*opType=SCALAR.*)",
|
||||
|
@ -79,8 +79,8 @@ public:
|
||||
* @param type Tensor element type
|
||||
* @param shape Tensor shape
|
||||
* @param host_ptr Pointer to pre-allocated host memory
|
||||
* @param strides Optional strides parameters in elements. Strides are supposed to be equal to shape if they are not
|
||||
* set
|
||||
* @param strides Optional strides parameters in bytes. Strides are supposed to be computed automatically based
|
||||
* on shape and element size
|
||||
*/
|
||||
Tensor(const element::Type type, const Shape& shape, void* host_ptr, const Strides& strides = {});
|
||||
|
||||
@ -124,7 +124,7 @@ public:
|
||||
size_t get_byte_size() const;
|
||||
|
||||
/**
|
||||
* @return Tensor's strides in elements
|
||||
* @return Tensor's strides in bytes
|
||||
*/
|
||||
Strides get_strides() const;
|
||||
|
||||
|
@ -40,15 +40,26 @@ Tensor::Tensor(const element::Type element_type, const Shape& shape, const Alloc
|
||||
_impl->allocate();
|
||||
}
|
||||
|
||||
Tensor::Tensor(const element::Type element_type, const Shape& shape, void* host_ptr, const Strides& strides) {
|
||||
Tensor::Tensor(const element::Type element_type, const Shape& shape, void* host_ptr, const Strides& byte_strides) {
|
||||
ie::SizeVector blk_order(shape.size());
|
||||
std::iota(blk_order.begin(), blk_order.end(), 0);
|
||||
ie::SizeVector dim_offset(shape.size(), 0);
|
||||
ie::SizeVector blk_strides;
|
||||
if (strides.empty()) {
|
||||
if (byte_strides.empty()) {
|
||||
blk_strides = ov::row_major_strides(shape);
|
||||
} else {
|
||||
blk_strides.assign(strides.begin(), strides.end());
|
||||
blk_strides.resize(byte_strides.size());
|
||||
std::transform(byte_strides.begin(),
|
||||
byte_strides.end(),
|
||||
blk_strides.begin(),
|
||||
[&element_type](size_t byte_stride) {
|
||||
OPENVINO_ASSERT(byte_stride % element_type.size() == 0,
|
||||
"Limitation: Stride in bytes ",
|
||||
byte_stride,
|
||||
" should be divisible by size of element ",
|
||||
element_type.size());
|
||||
return byte_stride / element_type.size();
|
||||
});
|
||||
}
|
||||
|
||||
try {
|
||||
@ -93,7 +104,19 @@ Strides Tensor::get_strides() const {
|
||||
OPENVINO_ASSERT(get_element_type().bitwidth() >= 8,
|
||||
"Could not get strides for types with bitwidths less then 8 bit. Tensor type: ",
|
||||
get_element_type());
|
||||
OV_TENSOR_STATEMENT(return _impl->getTensorDesc().getBlockingDesc().getStrides());
|
||||
OV_TENSOR_STATEMENT({
|
||||
const auto& element_strides = _impl->getTensorDesc().getBlockingDesc().getStrides();
|
||||
const size_t elem_size = get_element_type().size();
|
||||
Strides byte_strides;
|
||||
byte_strides.resize(element_strides.size());
|
||||
std::transform(element_strides.begin(),
|
||||
element_strides.end(),
|
||||
byte_strides.begin(),
|
||||
[&elem_size](size_t stride) {
|
||||
return stride * elem_size;
|
||||
});
|
||||
return byte_strides;
|
||||
});
|
||||
}
|
||||
|
||||
size_t Tensor::get_size() const {
|
||||
@ -120,6 +143,7 @@ void* Tensor::data(const element::Type element_type) const {
|
||||
", is not representable as pointer to ",
|
||||
element_type);
|
||||
}
|
||||
// since we don't use byte offsets, we need to explicitly multiply by element_size
|
||||
auto byte_offset = _impl->getTensorDesc().getBlockingDesc().getOffsetPadding() * get_element_type().size();
|
||||
OPENVINO_ASSERT((get_element_type().bitwidth() >= 8) || (byte_offset == 0),
|
||||
"ROI access for types with bitwidths less then 8 bit is not implemented. Tensor type: ",
|
||||
|
@ -18,6 +18,13 @@
|
||||
|
||||
using OVTensorTest = ::testing::Test;
|
||||
|
||||
inline ov::Strides byteStrides(const ov::Strides& strides, const ov::element::Type& type) {
|
||||
ov::Strides byte_strides(strides.size());
|
||||
for (size_t i = 0; i < strides.size(); ++i)
|
||||
byte_strides[i] = strides[i] * type.size();
|
||||
return byte_strides;
|
||||
}
|
||||
|
||||
TEST_F(OVTensorTest, canCreateTensor) {
|
||||
ov::Shape shape = {4, 3, 2};
|
||||
ov::runtime::Tensor t{ov::element::f32, shape};
|
||||
@ -27,7 +34,7 @@ TEST_F(OVTensorTest, canCreateTensor) {
|
||||
ASSERT_EQ(ov::element::f32, t.get_element_type());
|
||||
ASSERT_EQ(shape, t.get_shape());
|
||||
ASSERT_NE(shape, t.get_strides());
|
||||
ASSERT_EQ(ov::Strides({6, 2, 1}), t.get_strides());
|
||||
ASSERT_EQ(byteStrides(ov::Strides({6, 2, 1}), t.get_element_type()), t.get_strides());
|
||||
ASSERT_EQ(ov::element::f32.size() * totalSize, t.get_byte_size());
|
||||
ASSERT_THROW(t.data(ov::element::i64), ov::Exception);
|
||||
ASSERT_THROW(t.data<std::int32_t>(), ov::Exception);
|
||||
@ -72,7 +79,7 @@ TEST_F(OVTensorTest, canAccessExternalData) {
|
||||
ASSERT_EQ(data, t.data(ov::element::f32));
|
||||
ASSERT_EQ(data, ptr);
|
||||
ASSERT_THROW(t.data<std::int16_t>(), ov::Exception);
|
||||
ASSERT_EQ(ov::row_major_strides(shape), t.get_strides());
|
||||
ASSERT_EQ(byteStrides(ov::row_major_strides(shape), t.get_element_type()), t.get_strides());
|
||||
ASSERT_EQ(ov::shape_size(shape), t.get_size());
|
||||
ASSERT_EQ(ov::shape_size(shape) * ov::element::f32.size(), t.get_byte_size());
|
||||
}
|
||||
@ -81,11 +88,11 @@ TEST_F(OVTensorTest, canAccessExternalData) {
|
||||
TEST_F(OVTensorTest, canAccessExternalDataWithStrides) {
|
||||
ov::Shape shape = {2, 3};
|
||||
float data[] = {5.f, 6.f, 7.f, 0.f, 1.f, 42.f, 3.f, 0.f};
|
||||
ov::runtime::Tensor t{ov::element::f32, shape, data, {4, 1}};
|
||||
ASSERT_EQ(ov::Strides({4, 1}), t.get_strides());
|
||||
ov::runtime::Tensor t{ov::element::f32, shape, data, {16, 4}};
|
||||
ASSERT_EQ(ov::Strides({16, 4}), t.get_strides());
|
||||
{
|
||||
ASSERT_EQ((ov::Shape{2, 3}), t.get_shape());
|
||||
float* ptr = t.data<float>();
|
||||
const float* ptr = t.data<const float>();
|
||||
ASSERT_EQ(ptr[5], 42);
|
||||
}
|
||||
}
|
||||
@ -98,16 +105,23 @@ TEST_F(OVTensorTest, cannotCreateTensorWithExternalNullptr) {
|
||||
TEST_F(OVTensorTest, cannotCreateTensorWithWrongStrides) {
|
||||
ov::Shape shape = {2, 3};
|
||||
float data[] = {5.f, 6.f, 7.f, 0.f, 1.f, 42.f, 3.f, 0.f};
|
||||
const auto el = ov::element::f32;
|
||||
{
|
||||
// strides.size() != shape.size()
|
||||
EXPECT_THROW(ov::runtime::Tensor(ov::element::f32, shape, data, {6, 3, 1}), ov::Exception);
|
||||
EXPECT_THROW(ov::runtime::Tensor(el, shape, data, byteStrides({6, 3, 1}, el)), ov::Exception);
|
||||
}
|
||||
{
|
||||
// strides values are element-wise >= ov::row_major_strides(shape) values
|
||||
EXPECT_THROW(ov::runtime::Tensor(ov::element::f32, shape, data, {2, 1}), ov::Exception);
|
||||
EXPECT_THROW(ov::runtime::Tensor(ov::element::f32, shape, data, {3, 0}), ov::Exception);
|
||||
EXPECT_THROW(ov::runtime::Tensor(ov::element::f32, shape, data, {3, 2}), ov::Exception);
|
||||
EXPECT_NO_THROW(ov::runtime::Tensor(ov::element::f32, shape, data, {6, 2}));
|
||||
EXPECT_THROW(ov::runtime::Tensor(el, shape, data, byteStrides({2, 1}, el)), ov::Exception);
|
||||
EXPECT_THROW(ov::runtime::Tensor(el, shape, data, byteStrides({3, 0}, el)), ov::Exception);
|
||||
EXPECT_THROW(ov::runtime::Tensor(el, shape, data, byteStrides({3, 2}, el)), ov::Exception);
|
||||
EXPECT_NO_THROW(ov::runtime::Tensor(el, shape, data, byteStrides({6, 2}, el)));
|
||||
}
|
||||
{
|
||||
// strides are not divisible by elem_size
|
||||
EXPECT_THROW(ov::runtime::Tensor(el, shape, data, {7, el.size()}), ov::Exception);
|
||||
EXPECT_THROW(ov::runtime::Tensor(el, shape, data, {3, 0}), ov::Exception);
|
||||
EXPECT_THROW(ov::runtime::Tensor(el, shape, data, {el.size(), 3}), ov::Exception);
|
||||
}
|
||||
}
|
||||
|
||||
@ -119,7 +133,7 @@ TEST_F(OVTensorTest, saveDimsAndSizeAfterMove) {
|
||||
|
||||
ASSERT_EQ(shape, new_tensor.get_shape());
|
||||
ASSERT_EQ(ov::element::f32, new_tensor.get_element_type());
|
||||
ASSERT_EQ(ov::row_major_strides(shape), new_tensor.get_strides());
|
||||
ASSERT_EQ(byteStrides(ov::row_major_strides(shape), new_tensor.get_element_type()), new_tensor.get_strides());
|
||||
|
||||
ASSERT_THROW(t.get_size(), ov::Exception);
|
||||
ASSERT_THROW(t.get_element_type(), ov::Exception);
|
||||
@ -141,7 +155,7 @@ TEST_F(OVTensorTest, canSetShape) {
|
||||
ASSERT_EQ(t.get_shape(), origShape);
|
||||
ASSERT_NO_THROW(t.set_shape({4, 5, 6}));
|
||||
ASSERT_EQ(newShape, t.get_shape());
|
||||
ASSERT_EQ(ov::row_major_strides(newShape), t.get_strides());
|
||||
ASSERT_EQ(byteStrides(ov::row_major_strides(newShape), t.get_element_type()), t.get_strides());
|
||||
ASSERT_NE(orig_data, t.data());
|
||||
|
||||
// check that setShape for copy changes original Tensor
|
||||
@ -180,7 +194,7 @@ TEST_F(OVTensorTest, makeRangeRoiTensor) {
|
||||
ASSERT_EQ(roi_tensor.data<int32_t>() - t.data<int32_t>(), ref_offset_elems);
|
||||
ASSERT_EQ(reinterpret_cast<uint8_t*>(roi_tensor.data()) - reinterpret_cast<uint8_t*>(t.data()), ref_offset_bytes);
|
||||
ASSERT_EQ(roi_tensor.get_strides(), t.get_strides());
|
||||
ASSERT_EQ(ref_strides, roi_tensor.get_strides());
|
||||
ASSERT_EQ(byteStrides(ref_strides, roi_tensor.get_element_type()), roi_tensor.get_strides());
|
||||
ASSERT_EQ(roi_tensor.get_element_type(), t.get_element_type());
|
||||
}
|
||||
|
||||
@ -218,14 +232,15 @@ TEST_F(OVTensorTest, readRangeRoiBlob) {
|
||||
ov::runtime::Tensor roi_tensor{t, {0, 0, 2, 4}, {1, 3, 4, 8}};
|
||||
ASSERT_NE(false, static_cast<bool>(roi_tensor));
|
||||
{
|
||||
auto roi = roi_tensor.data<int32_t>();
|
||||
const std::uint8_t* roi = reinterpret_cast<const std::uint8_t*>(roi_tensor.data());
|
||||
ASSERT_NE(nullptr, roi);
|
||||
auto strides = roi_tensor.get_strides();
|
||||
for (auto&& c : ngraph::CoordinateTransformBasic{roi_tensor.get_shape()}) {
|
||||
auto actual = roi[c[3] * strides[3] + c[2] * strides[2] + c[1] * strides[1] + c[0] * strides[0]];
|
||||
auto expected = t.data<int32_t>()[(c[3] + 4) * strides[3] + (c[2] + 2) * strides[2] +
|
||||
(c[1] + 0) * strides[1] + (c[0] + 0) * strides[0]];
|
||||
ASSERT_EQ(expected, actual) << c;
|
||||
auto actual_addr = roi + c[3] * strides[3] + c[2] * strides[2] + c[1] * strides[1] + c[0] * strides[0];
|
||||
auto expected_addr = t.data<int32_t>() + ((c[3] + 4) * strides[3] + (c[2] + 2) * strides[2] +
|
||||
(c[1] + 0) * strides[1] + (c[0] + 0) * strides[0]) /
|
||||
t.get_element_type().size();
|
||||
ASSERT_EQ(actual_addr, reinterpret_cast<const std::uint8_t*>(expected_addr));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -73,14 +73,6 @@ const std::map<py::str, ov::element::Type> dtype_to_ov_type = {
|
||||
{"bool", ov::element::boolean},
|
||||
};
|
||||
|
||||
ov::Strides to_numpy_strides(const ov::Strides& strides, const ov::element::Type& ov_type) {
|
||||
ov::Strides numpy_strides(strides.size());
|
||||
std::transform(strides.begin(), strides.end(), numpy_strides.begin(), [&ov_type](size_t stride) {
|
||||
return stride * ov_type.size();
|
||||
});
|
||||
return numpy_strides;
|
||||
}
|
||||
|
||||
InferenceEngine::Layout get_layout_from_string(const std::string& layout) {
|
||||
return layout_str_to_enum.at(layout);
|
||||
}
|
||||
|
@ -36,8 +36,6 @@ namespace Common
|
||||
extern const std::map<ov::element::Type, py::dtype> ov_type_to_dtype;
|
||||
extern const std::map<py::str, ov::element::Type> dtype_to_ov_type;
|
||||
|
||||
ov::Strides to_numpy_strides(const ov::Strides& strides, const ov::element::Type& ov_type);
|
||||
|
||||
InferenceEngine::Layout get_layout_from_string(const std::string& layout);
|
||||
|
||||
const std::string& get_layout_from_enum(const InferenceEngine::Layout& layout);
|
||||
|
@ -71,7 +71,7 @@ void regclass_Tensor(py::module m) {
|
||||
cls.def_property_readonly("data", [](ov::runtime::Tensor& self) {
|
||||
return py::array(Common::ov_type_to_dtype.at(self.get_element_type()),
|
||||
self.get_shape(),
|
||||
Common::to_numpy_strides(self.get_strides(), self.get_element_type()),
|
||||
self.get_strides(),
|
||||
self.data(),
|
||||
py::cast(self));
|
||||
});
|
||||
|
Loading…
Reference in New Issue
Block a user