[CPU Plugin][Func Test] Upgrade ConvWithZeroPointFuseSubgraphTest to API 2.0 (#21330)
Signed-off-by: Zhai, Xuejun <xuejun.zhai@intel.com>
This commit is contained in:
parent
164d101295
commit
441427abc8
@ -4,23 +4,23 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "test_utils/cpu_test_utils.hpp"
|
||||
#include "shared_test_classes/base/layer_test_utils.hpp"
|
||||
#include "ov_models/utils/ov_helpers.hpp"
|
||||
#include "ov_models/builders.hpp"
|
||||
#include "ov_models/utils/ov_helpers.hpp"
|
||||
#include "shared_test_classes/base/ov_subgraph.hpp"
|
||||
#include "test_utils/cpu_test_utils.hpp"
|
||||
|
||||
using namespace CPUTestUtils;
|
||||
|
||||
namespace SubgraphTestsDefinitions {
|
||||
namespace ov {
|
||||
namespace test {
|
||||
|
||||
using convConcatCPUParams = std::tuple<
|
||||
nodeType, // Ngraph convolution type
|
||||
InferenceEngine::SizeVector // Input shapes
|
||||
>;
|
||||
using convConcatCPUParams = std::tuple<nodeType, // Node convolution type
|
||||
ov::Shape // Input shapes
|
||||
>;
|
||||
|
||||
// Subgraph:
|
||||
/*
|
||||
@ -44,7 +44,7 @@ using convConcatCPUParams = std::tuple<
|
||||
|
||||
class ConvWithZeroPointFuseSubgraphTest : public testing::WithParamInterface<convConcatCPUParams>,
|
||||
public CPUTestsBase,
|
||||
virtual public LayerTestsUtils::LayerTestsCommon {
|
||||
virtual public SubgraphBaseStaticTest {
|
||||
public:
|
||||
static std::string getTestCaseName(testing::TestParamInfo<convConcatCPUParams> obj);
|
||||
|
||||
@ -53,4 +53,5 @@ protected:
|
||||
std::string pluginTypeNode;
|
||||
};
|
||||
|
||||
} // namespace SubgraphTestsDefinitions
|
||||
} // namespace test
|
||||
} // namespace ov
|
||||
|
@ -2,19 +2,21 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "ngraph/opsets/opset1.hpp"
|
||||
#include "test_utils/convolution_params.hpp"
|
||||
#include "subgraph_tests/include/conv_with_zero_point_fuse.hpp"
|
||||
|
||||
using namespace InferenceEngine;
|
||||
#include "common_test_utils/node_builders/convolution.hpp"
|
||||
#include "common_test_utils/node_builders/group_convolution.hpp"
|
||||
#include "test_utils/convolution_params.hpp"
|
||||
|
||||
using namespace CPUTestUtils;
|
||||
|
||||
namespace SubgraphTestsDefinitions {
|
||||
namespace ov {
|
||||
namespace test {
|
||||
|
||||
std::string ConvWithZeroPointFuseSubgraphTest::getTestCaseName(testing::TestParamInfo<convConcatCPUParams> obj) {
|
||||
std::ostringstream result;
|
||||
nodeType type;
|
||||
SizeVector inputShapes;
|
||||
ov::Shape inputShapes;
|
||||
std::tie(type, inputShapes) = obj.param;
|
||||
|
||||
result << "Type=" << nodeType2str(type) << "_";
|
||||
@ -26,115 +28,110 @@ std::string ConvWithZeroPointFuseSubgraphTest::getTestCaseName(testing::TestPara
|
||||
void ConvWithZeroPointFuseSubgraphTest::SetUp() {
|
||||
targetDevice = ov::test::utils::DEVICE_CPU;
|
||||
nodeType type;
|
||||
SizeVector inputShapes;
|
||||
ov::Shape inputShapes;
|
||||
std::tie(type, inputShapes) = this->GetParam();
|
||||
pluginTypeNode = nodeType2PluginType(type);
|
||||
|
||||
const ngraph::op::PadType paddingType { ngraph::op::PadType::EXPLICIT };
|
||||
const ov::op::PadType paddingType{ov::op::PadType::EXPLICIT};
|
||||
const size_t numOutChannels = 256;
|
||||
const SizeVector dilation { 1, 1 };
|
||||
const SizeVector kernelSize { 1, 1 };
|
||||
const SizeVector strides { 1, 1 };
|
||||
const std::vector<ptrdiff_t> padBegin { 0, 0 };
|
||||
const std::vector<ptrdiff_t> padEnd { 0, 0 };
|
||||
const std::vector<size_t> dilation{1, 1};
|
||||
const std::vector<size_t> kernelSize{1, 1};
|
||||
const std::vector<size_t> strides{1, 1};
|
||||
const std::vector<ptrdiff_t> padBegin{0, 0};
|
||||
const std::vector<ptrdiff_t> padEnd{0, 0};
|
||||
|
||||
selectedType = ".*_I8";
|
||||
selectedType = ".*_i8";
|
||||
|
||||
ov::ParameterVector inputParams {std::make_shared<ov::op::v0::Parameter>(ngraph::element::f32, ov::Shape(inputShapes))};
|
||||
const auto fq = ngraph::builder::makeFakeQuantize(
|
||||
inputParams[0],
|
||||
ov::element::f32,
|
||||
256,
|
||||
{1, 1, 1, 1},
|
||||
{-12.8f},
|
||||
{12.7f},
|
||||
{-12.8f},
|
||||
{12.7f});
|
||||
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ov::element::f32, inputShapes)};
|
||||
const auto fq = ngraph::builder::makeFakeQuantize(inputParams[0],
|
||||
ov::element::f32,
|
||||
256,
|
||||
{1, 1, 1, 1},
|
||||
{-12.8f},
|
||||
{12.7f},
|
||||
{-12.8f},
|
||||
{12.7f});
|
||||
|
||||
std::vector<std::shared_ptr<ngraph::Node>> branches(2);
|
||||
{
|
||||
ngraph::Strides strides{1, 1};
|
||||
ngraph::Shape pads_begin{0, 0}, pads_end{0, 0}, kernel{1, 1};
|
||||
branches[0] = std::make_shared<ngraph::opset1::MaxPool>(fq,
|
||||
strides,
|
||||
pads_begin,
|
||||
pads_end,
|
||||
kernel);
|
||||
ov::Strides strides{1, 1};
|
||||
ov::Shape pads_begin{0, 0}, pads_end{0, 0}, kernel{1, 1};
|
||||
branches[0] = std::make_shared<ov::op::v1::MaxPool>(fq, strides, pads_begin, pads_end, kernel);
|
||||
}
|
||||
{
|
||||
const auto fq_conv_data = ngraph::builder::makeFakeQuantize(
|
||||
fq,
|
||||
ov::element::f32,
|
||||
256,
|
||||
{1, 1, 1, 1},
|
||||
{-12.8f},
|
||||
{12.7f},
|
||||
{-12.8f},
|
||||
{12.7f});
|
||||
const auto fq_conv_data = ngraph::builder::makeFakeQuantize(fq,
|
||||
ov::element::f32,
|
||||
256,
|
||||
{1, 1, 1, 1},
|
||||
{-12.8f},
|
||||
{12.7f},
|
||||
{-12.8f},
|
||||
{12.7f});
|
||||
|
||||
const InferenceEngine::SizeVector weights_const_shape = {numOutChannels, inputShapes[1], kernelSize[0], kernelSize[1]};
|
||||
const auto weights_const_values = std::vector<int>(ngraph::shape_size(weights_const_shape), 1);
|
||||
const auto weights_const = ngraph::builder::makeConstant(ov::element::i8, weights_const_shape, weights_const_values);
|
||||
const ov::Shape weights_const_shape = {numOutChannels, inputShapes[1], kernelSize[0], kernelSize[1]};
|
||||
const auto weights_const_values = std::vector<int>(ov::shape_size(weights_const_shape), 1);
|
||||
const auto weights_const =
|
||||
ngraph::builder::makeConstant(ov::element::i8, weights_const_shape, weights_const_values);
|
||||
|
||||
const auto weights_convert = std::make_shared<ov::op::v0::Convert>(weights_const, ov::element::f32);
|
||||
|
||||
const auto weights_multiply = std::make_shared<ov::opset10::Multiply>(
|
||||
weights_convert,
|
||||
ngraph::builder::makeConstant(ov::element::f32,
|
||||
{numOutChannels, 1, 1, 1},
|
||||
std::vector<float>(numOutChannels, 1.0)));
|
||||
{numOutChannels, 1, 1, 1},
|
||||
std::vector<float>(numOutChannels, 1.0)));
|
||||
|
||||
switch (type) {
|
||||
case nodeType::convolution: {
|
||||
branches[1] = ngraph::builder::makeConvolution(fq_conv_data,
|
||||
weights_multiply,
|
||||
ngraph::element::f32,
|
||||
kernelSize,
|
||||
strides,
|
||||
padBegin,
|
||||
padEnd,
|
||||
dilation,
|
||||
paddingType,
|
||||
numOutChannels);
|
||||
break;
|
||||
}
|
||||
case nodeType::groupConvolution: {
|
||||
branches[1] = ngraph::builder::makeGroupConvolution(
|
||||
fq_conv_data,
|
||||
std::make_shared<ov::opset10::Reshape>(
|
||||
weights_multiply,
|
||||
ngraph::builder::makeConstant(
|
||||
ov::element::i32,
|
||||
{5},
|
||||
std::vector<size_t>{1, numOutChannels, inputShapes[1], kernelSize[0], kernelSize[1]}),
|
||||
true),
|
||||
ngraph::element::f32,
|
||||
strides,
|
||||
padBegin,
|
||||
padEnd,
|
||||
dilation,
|
||||
paddingType);
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw std::runtime_error("Subgraph concat test doesn't support this type of operation");
|
||||
}
|
||||
case nodeType::convolution: {
|
||||
branches[1] = ov::test::utils::make_convolution(fq_conv_data,
|
||||
weights_multiply,
|
||||
ov::element::f32,
|
||||
kernelSize,
|
||||
strides,
|
||||
padBegin,
|
||||
padEnd,
|
||||
dilation,
|
||||
paddingType,
|
||||
numOutChannels);
|
||||
break;
|
||||
}
|
||||
case nodeType::groupConvolution: {
|
||||
branches[1] = ov::test::utils::make_group_convolution(
|
||||
fq_conv_data,
|
||||
std::make_shared<ov::opset10::Reshape>(
|
||||
weights_multiply,
|
||||
ngraph::builder::makeConstant(
|
||||
ov::element::i32,
|
||||
{5},
|
||||
std::vector<size_t>{1, numOutChannels, inputShapes[1], kernelSize[0], kernelSize[1]}),
|
||||
true),
|
||||
ov::element::f32,
|
||||
strides,
|
||||
padBegin,
|
||||
padEnd,
|
||||
dilation,
|
||||
paddingType);
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw std::runtime_error("Subgraph concat test doesn't support this type of operation");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto concat = std::make_shared<ov::op::v0::Concat>(ov::NodeVector{branches[0], branches[1]}, 1);
|
||||
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset4::Result>(concat)};
|
||||
function = std::make_shared<ngraph::Function>(results, inputParams, "ConvWithZeroPointFuseSubgraphTest");
|
||||
ov::ResultVector results{std::make_shared<ov::op::v0::Result>(concat)};
|
||||
function = std::make_shared<ov::Model>(results, inputParams, "ConvWithZeroPointFuseSubgraphTest");
|
||||
}
|
||||
|
||||
TEST_P(ConvWithZeroPointFuseSubgraphTest, CompareWithRefs) {
|
||||
Run();
|
||||
run();
|
||||
|
||||
CheckPluginRelatedResults(executableNetwork, pluginTypeNode);
|
||||
CheckPluginRelatedResults(compiledModel, pluginTypeNode);
|
||||
};
|
||||
|
||||
const SizeVector inputShapes2D = {1, 32, 136, 136};
|
||||
const ov::Shape inputShapes2D = {1, 32, 136, 136};
|
||||
|
||||
const auto params2DConv = ::testing::Combine(::testing::ValuesIn({nodeType::convolution, nodeType::groupConvolution}),
|
||||
::testing::Values(inputShapes2D));
|
||||
@ -144,4 +141,5 @@ INSTANTIATE_TEST_SUITE_P(smoke_ConvWithZeroPointFuse,
|
||||
params2DConv,
|
||||
ConvWithZeroPointFuseSubgraphTest::getTestCaseName);
|
||||
|
||||
} // namespace SubgraphTestsDefinitions
|
||||
} // namespace test
|
||||
} // namespace ov
|
||||
|
Loading…
Reference in New Issue
Block a user