[TF FE] Refactor Range and add layer test (#15548)

Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
This commit is contained in:
Roman Kazantsev 2023-02-07 16:18:04 +04:00 committed by GitHub
parent 7659551d71
commit 44eedc8870
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 64 additions and 6 deletions

View File

@ -14,14 +14,14 @@ namespace tensorflow {
namespace op {
OutputVector translate_range_op(const NodeContext& node) {
default_op_checks(node, 3, {"Range", "RANGE"});
auto start = node.get_input(0);
auto stop = node.get_input(1);
auto step = node.get_input(2);
auto out_type = node.get_attribute<ov::element::Type>("Tidx");
auto limit = node.get_input(1);
auto delta = node.get_input(2);
auto res = make_shared<Range>(start, stop, step, out_type);
set_node_name(node.get_name(), res);
return res->outputs();
auto range = make_shared<Range>(start, limit, delta, start.get_element_type());
set_node_name(node.get_name(), range);
return {range};
}
} // namespace op

View File

@ -0,0 +1,58 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
class TestRange(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
inputs_data = {}
if self.negative_delta:
inputs_data['start'] = np.random.randint(1, 10, []).astype(self.input_type)
inputs_data['limit'] = np.random.randint(-10, 0, []).astype(self.input_type)
inputs_data['delta'] = np.random.randint(-5, -1, []).astype(self.input_type)
else:
inputs_data['start'] = np.random.randint(1, 10, []).astype(self.input_type)
inputs_data['limit'] = np.random.randint(10, 30, []).astype(self.input_type)
inputs_data['delta'] = np.random.randint(1, 5, []).astype(self.input_type)
return inputs_data
def create_range_net(self, input_type, negative_delta):
self.input_type = input_type
self.negative_delta = negative_delta
types_map = {
np.float32: tf.float32,
np.int32: tf.int32
}
assert input_type in types_map, "Incorrect test case"
tf_type = types_map[input_type]
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
start = tf.compat.v1.placeholder(tf_type, [], 'start')
limit = tf.compat.v1.placeholder(tf_type, [], 'limit')
delta = tf.compat.v1.placeholder(tf_type, [], 'delta')
tf.raw_ops.Range(start=start, limit=limit, delta=delta)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(input_type=np.float32, negative_delta=False),
dict(input_type=np.int32, negative_delta=True),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_range_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_range_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)