[ПЗГ] fix coverity (#19204)
This commit is contained in:
parent
14abb2de8e
commit
49bbcb4cf6
@ -79,7 +79,8 @@ struct activation : public primitive_base<activation> {
|
||||
CLDNN_DECLARE_PRIMITIVE(activation)
|
||||
|
||||
activation() : primitive_base("", {}),
|
||||
activation_function(activation_func::none) {}
|
||||
activation_function(activation_func::none),
|
||||
additional_params({0.f, 0.f}) {}
|
||||
|
||||
DECLARE_OBJECT_TYPE_SERIALIZATION
|
||||
|
||||
|
@ -63,9 +63,9 @@ struct binary_convolution : public primitive_base<binary_convolution> {
|
||||
/// @brief User-defined output data size of the primitive (w/o padding).
|
||||
tensor output_size;
|
||||
/// @brief Number of feature groups (grouped convolution). If more than 1 then weights/bias count needs to be 1.
|
||||
int groups;
|
||||
int groups = 1;
|
||||
/// @brief Logical value of padding. Can be one of 3 values: 1 - pad bits equal to 1; -1 -> pad bits equal to 0; 0 -> pad is not counted
|
||||
float pad_value;
|
||||
float pad_value = 0.0f;
|
||||
/// @brief List of primitive ids containing weights data.
|
||||
const primitive_id_arr weights;
|
||||
|
||||
|
@ -67,11 +67,11 @@ struct border : public primitive_base<border> {
|
||||
/// @brief Sizes of border that needs to be added from right (in X dimension) and from bottom (in Y dimension).
|
||||
ov::CoordinateDiff pads_end;
|
||||
/// @brief Type of border that needs to be added to the input.
|
||||
ov::op::PadMode pad_mode;
|
||||
ov::op::PadMode pad_mode = ov::op::PadMode::CONSTANT;
|
||||
/// @brief Border value that is used in constant mode.
|
||||
float pad_value;
|
||||
float pad_value = 0.0f;
|
||||
/// @brief Bit mask whether input is non-constant or not. Position is defined at PAD_NON_CONST_INPUT.
|
||||
int32_t non_constant_input_mask;
|
||||
int32_t non_constant_input_mask = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -28,7 +28,7 @@ struct bucketize : primitive_base<bucketize> {
|
||||
: primitive_base(id, inputs, {output_padding}, {optional_data_type(output_type)}),
|
||||
with_right_bound(with_right_bound) {}
|
||||
|
||||
bool with_right_bound;
|
||||
bool with_right_bound = false;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -62,7 +62,7 @@ struct concatenation : public primitive_base<concatenation> {
|
||||
: primitive_base(id, {input}, {output_padding}, {optional_data_type{output_dt}}), axis(axis) {}
|
||||
|
||||
/// @brief Dimension along which concatenation should take place
|
||||
int64_t axis;
|
||||
int64_t axis = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -50,9 +50,9 @@ struct convert_color : public primitive_base<convert_color> {
|
||||
mem_type(mem_type),
|
||||
output_layout(output_layout) {}
|
||||
|
||||
color_format input_color_format;
|
||||
color_format output_color_format;
|
||||
memory_type mem_type;
|
||||
color_format input_color_format = color_format::RGB;
|
||||
color_format output_color_format = color_format::RGB;
|
||||
memory_type mem_type = memory_type::buffer;
|
||||
layout output_layout;
|
||||
|
||||
size_t hash() const override {
|
||||
|
@ -174,7 +174,7 @@ struct convolution : public primitive_base<convolution> {
|
||||
/// @param padding_end Defines a padding added to input image on right (x axis) and bottom (y axis).
|
||||
ov::CoordinateDiff padding_end;
|
||||
/// @param audo_pad The pad type for automatically computing padding sizes
|
||||
ov::op::PadType auto_pad;
|
||||
ov::op::PadType auto_pad = ov::op::PadType::NOTSET;
|
||||
|
||||
/// @param deformable_mode.
|
||||
bool deformable_mode {false};
|
||||
@ -351,10 +351,10 @@ struct deformable_interp : public primitive_base<deformable_interp> {
|
||||
/// @brief Size of weights tensor.
|
||||
tensor kernel_size;
|
||||
/// @brief Number of feature groups (grouped convolution). If more than 1 then weights/bias count needs to be 1.
|
||||
uint32_t groups;
|
||||
uint32_t groups = 0;
|
||||
/// @param deformable_groups Defines a number of deformable groups that splits trans input into several parts
|
||||
/// by channel dimension.
|
||||
uint32_t deformable_groups;
|
||||
uint32_t deformable_groups = 0;
|
||||
/// @param padding_begin Defines a padding added to input image on left (x axis) and top (y axis).
|
||||
ov::CoordinateDiff padding_begin;
|
||||
/// @param padding_end Defines a padding added to input image on right (x axis) and bottom (y axis).
|
||||
@ -448,7 +448,7 @@ struct deformable_conv : public primitive_base<deformable_conv> {
|
||||
/// @brief User-defined output data size of the primitive (w/o padding).
|
||||
tensor output_size;
|
||||
/// @brief Number of feature groups (grouped convolution). If more than 1 then weights/bias count needs to be 1.
|
||||
uint32_t groups;
|
||||
uint32_t groups = 0;
|
||||
/// @brief List of primitive ids containing weights data.
|
||||
const primitive_id_arr weights;
|
||||
/// @brief List of primitive ids containing bias data.
|
||||
|
@ -127,7 +127,7 @@ struct crop : public primitive_base<crop> {
|
||||
/// @brief num_splits which Split has number of split as property
|
||||
size_t num_splits = 1;
|
||||
/// @brief original ngraph operation type
|
||||
crop_ngraph_op_mode op_mode;
|
||||
crop_ngraph_op_mode op_mode = crop_ngraph_op_mode::none;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -32,7 +32,7 @@ struct ctc_greedy_decoder : public primitive_base<ctc_greedy_decoder> {
|
||||
, output_tensor(output_tensor) {}
|
||||
|
||||
uint32_t blank_index;
|
||||
bool ctc_merge_repeated;
|
||||
bool ctc_merge_repeated = false;
|
||||
tensor output_tensor;
|
||||
primitive_id second_output;
|
||||
|
||||
|
@ -34,9 +34,9 @@ struct ctc_loss : primitive_base<ctc_loss> {
|
||||
ctc_merge_repeated(ctc_merge_repeated),
|
||||
unique(unique) {}
|
||||
|
||||
bool preprocess_collapse_repeated;
|
||||
bool ctc_merge_repeated;
|
||||
bool unique;
|
||||
bool preprocess_collapse_repeated = false;
|
||||
bool ctc_merge_repeated = false;
|
||||
bool unique = false;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -31,11 +31,11 @@ struct cum_sum : public primitive_base<cum_sum> {
|
||||
{}
|
||||
|
||||
/// @brief Scalar axis.
|
||||
int64_t axis;
|
||||
int64_t axis = 0;
|
||||
/// @brief If set to true then the top element is not included in sum.
|
||||
bool exclusive;
|
||||
bool exclusive = false;
|
||||
/// @brief If set to true will perform the sums in reverse direction.
|
||||
bool reverse;
|
||||
bool reverse = false;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -358,11 +358,11 @@ struct deconvolution : public primitive_base<deconvolution> {
|
||||
/// @brief Defines the distance in width and height between elements in the filter.
|
||||
ov::Strides dilations;
|
||||
/// @brief Indicates that the primitive has user-defined output size (non-zero value).
|
||||
bool with_output_size;
|
||||
bool with_output_size = true;
|
||||
/// @brief User-defined output data size of the primitive (w/o padding).
|
||||
tensor output_size;
|
||||
/// @brief Number of feature groups (grouped convolution). If more than 1 then weights/bias count needs to be 1.
|
||||
uint32_t groups;
|
||||
uint32_t groups = 1;
|
||||
/// @brief Defines a padding added to input image on left (x axis) and top (y axis).
|
||||
ov::CoordinateDiff pads_begin;
|
||||
/// @brief Defines a padding added to input image on right (x axis) and bottom (y axis).
|
||||
@ -370,7 +370,7 @@ struct deconvolution : public primitive_base<deconvolution> {
|
||||
/// @brief Defines additional amount of paddings per each spatial axis added to output tensor.
|
||||
ov::CoordinateDiff out_padding;
|
||||
/// @param grouped_weights_shape Defines if weights tensor has explicit group dimension.
|
||||
bool grouped_weights_shape;
|
||||
bool grouped_weights_shape = false;
|
||||
/// @brief Defines spatial shape of the output.
|
||||
ov::PartialShape output_partial_shape;
|
||||
/// @brief Data primitive id containing spatial shape of the output.
|
||||
|
@ -39,9 +39,9 @@ struct depth_to_space : public primitive_base<depth_to_space> {
|
||||
, mode(mode) {}
|
||||
|
||||
/// @brief Block size.
|
||||
size_t block_size;
|
||||
size_t block_size = 0;
|
||||
/// @brief depth division mode
|
||||
depth_to_space_mode mode;
|
||||
depth_to_space_mode mode = depth_to_space_mode::blocks_first;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -57,8 +57,8 @@ struct dft : public primitive_base<dft> {
|
||||
std::vector<int64_t> axes;
|
||||
std::vector<int64_t> signal_size;
|
||||
ov::Shape output_shape;
|
||||
dft_direction direction;
|
||||
dft_mode mode;
|
||||
dft_direction direction = dft_direction::forward;
|
||||
dft_mode mode = dft_mode::complex;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -177,7 +177,7 @@ struct eltwise : public primitive_base<eltwise> {
|
||||
}
|
||||
|
||||
/// @param mode Eltwise mode.
|
||||
eltwise_mode mode;
|
||||
eltwise_mode mode = eltwise_mode::sum;
|
||||
/// @param coefficients Blob-wise coefficient.
|
||||
std::vector<float> coefficients;
|
||||
/// @brief Defines shift in input buffers between adjacent calculations of output values.
|
||||
@ -185,7 +185,7 @@ struct eltwise : public primitive_base<eltwise> {
|
||||
/// @brief Define auto broadcast rule specification.
|
||||
ov::op::AutoBroadcastSpec broadcast_spec;
|
||||
/// @brief Define m_pythondiv.
|
||||
bool m_pythondiv;
|
||||
bool m_pythondiv = true;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -41,7 +41,7 @@ struct embedding_bag : public primitive_base<embedding_bag> {
|
||||
/// @brief Shape of output layout
|
||||
tensor output_shape;
|
||||
/// @brief Default index
|
||||
int32_t default_index;
|
||||
int32_t default_index = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -66,13 +66,13 @@ struct experimental_detectron_detection_output : public primitive_base<experimen
|
||||
|
||||
primitive_id output_classes;
|
||||
primitive_id output_scores;
|
||||
float score_threshold;
|
||||
float nms_threshold;
|
||||
int num_classes;
|
||||
int post_nms_count;
|
||||
int max_detections_per_image;
|
||||
bool class_agnostic_box_regression;
|
||||
float max_delta_log_wh;
|
||||
float score_threshold = 0.0f;
|
||||
float nms_threshold = 0.0f;
|
||||
int num_classes = 0;
|
||||
int post_nms_count = 0;
|
||||
int max_detections_per_image = 0;
|
||||
bool class_agnostic_box_regression = false;
|
||||
float max_delta_log_wh = 0.0f;
|
||||
std::vector<float> deltas_weights;
|
||||
|
||||
size_t hash() const override {
|
||||
|
@ -47,10 +47,10 @@ struct experimental_detectron_generate_proposals_single_image
|
||||
post_nms_count{post_nms_count} {}
|
||||
|
||||
primitive_id output_roi_scores;
|
||||
float min_size;
|
||||
float nms_threshold;
|
||||
int64_t pre_nms_count;
|
||||
int64_t post_nms_count;
|
||||
float min_size = 0.0f;
|
||||
float nms_threshold = 0.0f;
|
||||
int64_t pre_nms_count = 0;
|
||||
int64_t post_nms_count = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -41,15 +41,15 @@ struct experimental_detectron_prior_grid_generator
|
||||
image_height{image_height},
|
||||
image_width{image_width} {}
|
||||
|
||||
bool flatten;
|
||||
uint64_t h;
|
||||
uint64_t w;
|
||||
float stride_x;
|
||||
float stride_y;
|
||||
uint64_t featmap_height;
|
||||
uint64_t featmap_width;
|
||||
uint64_t image_height;
|
||||
uint64_t image_width;
|
||||
bool flatten = false;
|
||||
uint64_t h = 0;
|
||||
uint64_t w = 0;
|
||||
float stride_x = 0.0f;
|
||||
float stride_y = 0.0f;
|
||||
uint64_t featmap_height = 0;
|
||||
uint64_t featmap_width = 0;
|
||||
uint64_t image_height = 0;
|
||||
uint64_t image_width = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -34,7 +34,7 @@ struct experimental_detectron_topk_rois : public primitive_base<experimental_det
|
||||
max_rois(max_rois) {}
|
||||
|
||||
/// maximal numbers of output ROIs.
|
||||
size_t max_rois;
|
||||
size_t max_rois = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -33,7 +33,7 @@ struct eye : public primitive_base<eye> {
|
||||
shift{shift} {}
|
||||
|
||||
tensor output_shape;
|
||||
int32_t shift;
|
||||
int32_t shift = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -81,9 +81,9 @@ struct fully_connected : public primitive_base<fully_connected> {
|
||||
/// @brief Primitive id containing bias data.
|
||||
primitive_id bias;
|
||||
/// @brief Primitive dimension size.
|
||||
size_t input_size;
|
||||
size_t input_size = 2;
|
||||
/// @brief Primitive weights rank.
|
||||
size_t weights_rank;
|
||||
size_t weights_rank = 2;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -41,13 +41,13 @@ struct gather : public primitive_base<gather> {
|
||||
, support_neg_ind(support_neg_ind) {}
|
||||
|
||||
/// @brief Gathering axis
|
||||
int64_t axis;
|
||||
int64_t axis = 0;
|
||||
/// @brief Gather output shape
|
||||
ov::Shape output_shape;
|
||||
/// @brief Gathering batch_dim
|
||||
int64_t batch_dim;
|
||||
int64_t batch_dim = 0;
|
||||
/// @brief Support negative indexes
|
||||
bool support_neg_ind;
|
||||
bool support_neg_ind = false;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -45,7 +45,7 @@ struct gather_elements : public primitive_base<gather_elements> {
|
||||
tensor output_shape;
|
||||
|
||||
/// @brief Which axis to gather on.
|
||||
int64_t axis;
|
||||
int64_t axis = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -52,7 +52,7 @@ struct gather_nd : public primitive_base<gather_nd> {
|
||||
uint8_t batch_dims;
|
||||
|
||||
/// @brief GatherND batch_merged_output
|
||||
bool batch_merged_output;
|
||||
bool batch_merged_output = true;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -60,17 +60,17 @@ struct gemm : public primitive_base<gemm> {
|
||||
}
|
||||
|
||||
/// @brief Flag for transposing first input matrix
|
||||
bool transpose_input0;
|
||||
bool transpose_input0 = false;
|
||||
/// @brief Flag for transposing second input matrix
|
||||
bool transpose_input1;
|
||||
bool transpose_input1 = false;
|
||||
/// @brief Variable containing ALPHA parameter
|
||||
float alpha;
|
||||
float alpha = 1.0f;
|
||||
/// @brief Variable containing BETA parameter
|
||||
float beta;
|
||||
float beta = 1.0f;
|
||||
/// @brief First matrix rank
|
||||
size_t input_rank;
|
||||
size_t input_rank = 4;
|
||||
/// @brief Second matrix rank
|
||||
size_t weight_rank;
|
||||
size_t weight_rank = 4;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -55,13 +55,13 @@ struct generate_proposals
|
||||
|
||||
primitive_id output_rois_scores;
|
||||
primitive_id output_rois_num;
|
||||
float min_size;
|
||||
float nms_threshold;
|
||||
int64_t pre_nms_count;
|
||||
int64_t post_nms_count;
|
||||
bool normalized;
|
||||
float nms_eta;
|
||||
data_types roi_num_type;
|
||||
float min_size = 0.0f;
|
||||
float nms_threshold = 0.0f;
|
||||
int64_t pre_nms_count = 0;
|
||||
int64_t post_nms_count = 0;
|
||||
bool normalized = false;
|
||||
float nms_eta = 0.0f;
|
||||
data_types roi_num_type = data_types::bin;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -29,7 +29,7 @@ struct grn : public primitive_base<grn> {
|
||||
{}
|
||||
|
||||
/// @brief Bias value for whole output tensor.
|
||||
float bias;
|
||||
float bias = 0.0f;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -55,15 +55,15 @@ struct lrn : public primitive_base<lrn> {
|
||||
norm_region(lrn_norm_region) {}
|
||||
|
||||
/// @brief Size of normalization.
|
||||
uint32_t size;
|
||||
uint32_t size = 0;
|
||||
/// @brief Hyper parameter "k".
|
||||
float k;
|
||||
float k = 0.0f;
|
||||
/// @brief Hyper parameter "alpha".
|
||||
float alpha;
|
||||
float alpha = 0.0f;
|
||||
/// @brief Hyper parameter "beta".
|
||||
float beta;
|
||||
float beta = 0.0f;
|
||||
/// @brief Normalize across or within channel
|
||||
lrn_norm_region norm_region;
|
||||
lrn_norm_region norm_region = lrn_norm_region::lrn_norm_region_within_channel;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -111,17 +111,17 @@ struct lstm : public primitive_base<lstm> {
|
||||
/// @brief Primitive id containing peepholes data.
|
||||
primitive_id peepholes;
|
||||
/// @brief Cell clip threshold T. It is applied to the input of activations [-T, T]. No clip is applied if it is not specified.
|
||||
float clip;
|
||||
float clip = 0.0f;
|
||||
/// @brief Couple the input and forget gates if input_forget is 1. Default is 0.
|
||||
bool input_forget;
|
||||
bool input_forget = 0;
|
||||
/// @brief A list of 3 activation functions for the input, output, forget, cell, and hidden.
|
||||
std::vector<activation_func> activations;
|
||||
/// @brief Optional scaling values used by some activation functions. The values are consumed in the order of activation functions.
|
||||
std::vector<activation_additional_params> activation_params;
|
||||
/// @brief Output selection. Default the entire hidden sequence is returned.
|
||||
lstm_output_selection output_selection;
|
||||
lstm_output_selection output_selection = lstm_output_selection::sequence;
|
||||
/// @brief Weights, recurrent weights, and biases order. [iofz] : ONNX, [ifoz] : Caffe
|
||||
lstm_weights_order offset_order;
|
||||
lstm_weights_order offset_order = lstm_weights_order::izof;
|
||||
|
||||
// NOT SUPPORTED YET
|
||||
// /// @brief Optional tensor specifying lengths of the sequences in a batch.
|
||||
|
@ -48,7 +48,7 @@ struct lstm_dynamic : public primitive_base<lstm_dynamic> {
|
||||
const primitive_id& initial_hidden = "",
|
||||
const primitive_id& initial_cell = "",
|
||||
const float clip = 0.0f,
|
||||
const bool input_forget = 0,
|
||||
const bool input_forget = false,
|
||||
const padding& output_padding = padding())
|
||||
: primitive_base(id, {input}, {output_padding}),
|
||||
dyn_length(dyn_length),
|
||||
@ -79,9 +79,9 @@ struct lstm_dynamic : public primitive_base<lstm_dynamic> {
|
||||
/// @brief Primitive id containing the initial value of the cell state data.
|
||||
primitive_id initial_cell;
|
||||
/// @brief Cell clip threshold T. It is applied to the input of activations [-T, T]. No clip is applied if it is not specified.
|
||||
float clip;
|
||||
float clip = 0.0f;
|
||||
/// @brief Couple the input and forget gates if input_forget is 1. Default is 0.
|
||||
bool input_forget;
|
||||
bool input_forget = false;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -68,9 +68,9 @@ struct lstm_dynamic_timeloop
|
||||
/// @brief Array of primitive ids containing the initial value of the hidden state data (Ht-1).
|
||||
primitive_id initial_cell;
|
||||
/// @brief Cell clip threshold T. It is applied to the input of activations [-T, T]. No clip is applied if it is not specified.
|
||||
float clip;
|
||||
float clip = 0.0f;
|
||||
/// @brief Couple the input and forget gates if input_forget is 1. Default is 0.
|
||||
bool input_forget;
|
||||
bool input_forget = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -50,7 +50,7 @@ struct mutable_data : public primitive_base<mutable_data> {
|
||||
memory::ptr mem;
|
||||
|
||||
/// @brief Specifies function which will be used to fill weights.
|
||||
filler_type fill_type;
|
||||
filler_type fill_type = filler_type::no_fill;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -41,7 +41,7 @@ struct mvn : public primitive_base<mvn> {
|
||||
/// @brief Epsilon for not dividing by zero while normalizing.
|
||||
float epsilon;
|
||||
/// @brief The mode of applying epsilon.
|
||||
bool eps_inside_sqrt;
|
||||
bool eps_inside_sqrt = false;
|
||||
/// @brief Determines axes set for normalization.
|
||||
std::vector<int64_t> reduction_axes;
|
||||
|
||||
|
@ -55,9 +55,9 @@ struct normalize : public primitive_base<normalize> {
|
||||
/// All other dimensions should be 1.
|
||||
primitive_id scale_input;
|
||||
/// @brief Determines if the normalization is done across or within spatial (see documentation above).
|
||||
bool across_spatial;
|
||||
bool across_spatial = true;
|
||||
/// @brief Epsilon for not dividing by zero while normalizing.
|
||||
float epsilon;
|
||||
float epsilon = 1e-10f;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -84,13 +84,13 @@ struct one_hot : public primitive_base<one_hot> {
|
||||
/// @brief Output size reference.
|
||||
tensor shape;
|
||||
/// @brief One-hot axis position in output shape (0-based, from left to right).
|
||||
int64_t one_hot_axis;
|
||||
int64_t one_hot_axis = 0;
|
||||
/// @brief The number of classes and thus the size of the one-hot dimension
|
||||
int64_t depth;
|
||||
int64_t depth = 0;
|
||||
/// @brief The locations represented by indices in indices take this value.
|
||||
float on_value;
|
||||
float on_value = 1.0f;
|
||||
/// @brief all other locations take value this value.
|
||||
float off_value;
|
||||
float off_value = 0.0f;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -138,7 +138,7 @@ struct pooling : public primitive_base<pooling> {
|
||||
/// @brief Primitive id which contains indices output.
|
||||
primitive_id indices_output;
|
||||
/// @brief Pooling mode.
|
||||
pooling_mode mode;
|
||||
pooling_mode mode = pooling_mode::max;
|
||||
/// @brief Pooling kernel size.
|
||||
ov::Shape size;
|
||||
/// @brief Defines shift in input buffer between adjacent calculations of output values.
|
||||
@ -150,13 +150,13 @@ struct pooling : public primitive_base<pooling> {
|
||||
/// @brief Defines a shift, relative to the end of padding shape.
|
||||
ov::Shape pads_end;
|
||||
/// @brief Defines how the padding is calculated.
|
||||
ov::op::PadType auto_pad;
|
||||
ov::op::PadType auto_pad = ov::op::PadType::EXPLICIT;
|
||||
/// @brief Defines a type of rounding to be applied.
|
||||
ov::op::RoundingType rounding_type;
|
||||
ov::op::RoundingType rounding_type = ov::op::RoundingType::CEIL;
|
||||
/// @brief first dimension of input that should be used to calculate the upper bound of index output.
|
||||
int64_t axis = 0;
|
||||
/// @brief Indicates that the primitive has user-defined output size (non-zero value).
|
||||
bool with_output_size;
|
||||
bool with_output_size = true;
|
||||
/// @brief User-defined output data size of the primitive (w/o padding).
|
||||
tensor output_size;
|
||||
/// @brief type of index output
|
||||
|
@ -40,7 +40,7 @@ struct prior_box : public primitive_base<prior_box> {
|
||||
/// @param clip If true, will clip the prior so that it is within [0, 1].
|
||||
/// @param variance Variance for adjusting the prior boxes.
|
||||
/// @param step_width Step.
|
||||
/// @param offset Offset to the top left corner of each cell.
|
||||
/// @param offset Offset to the top left corner of each cell.
|
||||
prior_box(const primitive_id& id,
|
||||
const std::vector<input_info>& inputs,
|
||||
const tensor& output_size,
|
||||
@ -312,7 +312,7 @@ struct prior_box : public primitive_base<prior_box> {
|
||||
}
|
||||
|
||||
private:
|
||||
bool clustered;
|
||||
bool clustered = false;
|
||||
|
||||
void init(const std::vector<float>& ratios, const std::vector<float>& variances) {
|
||||
constexpr auto default_aspect_ratio = 1.0f;
|
||||
|
@ -58,10 +58,10 @@ struct pyramid_roi_align : public primitive_base<pyramid_roi_align> {
|
||||
, pyramid_starting_level(pyramid_starting_level)
|
||||
{}
|
||||
|
||||
int output_size;
|
||||
int sampling_ratio;
|
||||
int output_size = 0;
|
||||
int sampling_ratio = 0;
|
||||
std::vector<int> pyramid_scales;
|
||||
int pyramid_starting_level;
|
||||
int pyramid_starting_level = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -63,7 +63,7 @@ struct reduce : public primitive_base<reduce> {
|
||||
/// @brief List of axes to reduce
|
||||
std::vector<int64_t> axes;
|
||||
/// @brief Keep the reduced dimension or not, 1 mean keep reduced dimension
|
||||
bool keep_dims;
|
||||
bool keep_dims = false;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -46,14 +46,14 @@ struct region_yolo : public primitive_base<region_yolo> {
|
||||
/// @brief Defines a scope of a region yolo normalization
|
||||
/// @details
|
||||
/// Specific behaviour is determined by these parameters, as follows:
|
||||
uint32_t coords;
|
||||
uint32_t classes;
|
||||
uint32_t num;
|
||||
uint32_t coords = 0;
|
||||
uint32_t classes = 0;
|
||||
uint32_t num = 0;
|
||||
std::vector<int64_t> mask;
|
||||
uint32_t mask_size;
|
||||
int32_t axis;
|
||||
int32_t end_axis;
|
||||
bool do_softmax;
|
||||
uint32_t mask_size = 0;
|
||||
int32_t axis = 0;
|
||||
int32_t end_axis = 0;
|
||||
bool do_softmax = false;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -31,7 +31,7 @@ struct reorg_yolo : public primitive_base<reorg_yolo> {
|
||||
/// @brief Defines a scope of a reorg yolo normalization
|
||||
/// @details
|
||||
/// Specific behaviour is determined by these parameters, as follows:
|
||||
uint32_t stride;
|
||||
uint32_t stride = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -130,7 +130,7 @@ struct resample : public primitive_base<resample> {
|
||||
|
||||
tensor output_size;
|
||||
/// @param num_filter Input filter. Only used by bilinear sample_type.
|
||||
uint32_t num_filter;
|
||||
uint32_t num_filter = 0;
|
||||
/// @param sizes Describing output shape for spatial axes.
|
||||
std::vector<int64_t> sizes;
|
||||
/// @param scales Scales of spatial axes, i.e. output_shape / input_shape
|
||||
@ -142,17 +142,17 @@ struct resample : public primitive_base<resample> {
|
||||
/// @param pads_end End paddings for input.
|
||||
std::vector<size_t> pads_end;
|
||||
/// @param operation_type Resample method (nearest neighbor/bilinear/caffe bilinear).
|
||||
InterpolateOp::InterpolateMode operation_type;
|
||||
InterpolateOp::InterpolateMode operation_type = InterpolateOp::InterpolateMode::LINEAR;
|
||||
/// @param shape_calc_mode Specifies which input, sizes or scales, is used to calculate an output shape.
|
||||
InterpolateOp::ShapeCalcMode shape_calc_mode;
|
||||
InterpolateOp::ShapeCalcMode shape_calc_mode = InterpolateOp::ShapeCalcMode::SIZES;
|
||||
/// @param antialias is a flag that specifies whether to perform anti-aliasing.
|
||||
int32_t antialias;
|
||||
int32_t antialias = 0;
|
||||
/// @param cube_coeff specifies the parameter a for cubic interpolation. cube_coeff is used only when mode == cubic.
|
||||
float cube_coeff;
|
||||
float cube_coeff = -0.75f;
|
||||
/// @param coord_trans_mode specifies how to transform the coordinate in the resized tensor to the coordinate in the original tensor
|
||||
InterpolateOp::CoordinateTransformMode coord_trans_mode;
|
||||
InterpolateOp::CoordinateTransformMode coord_trans_mode = InterpolateOp::CoordinateTransformMode::HALF_PIXEL;
|
||||
/// @param round_mode specifies round mode when mode == nearest and is used only when mode == nearest.
|
||||
InterpolateOp::NearestMode round_mode;
|
||||
InterpolateOp::NearestMode round_mode = InterpolateOp::NearestMode::ROUND_PREFER_FLOOR;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -82,7 +82,7 @@ struct reshape : public primitive_base<reshape> {
|
||||
|
||||
ov::PartialShape output_partial_shape;
|
||||
|
||||
reshape_mode mode;
|
||||
reshape_mode mode = reshape_mode::base;
|
||||
|
||||
bool operator==(const primitive& rhs) const override {
|
||||
if (!compare_common_params(rhs))
|
||||
|
@ -52,9 +52,9 @@ struct reverse_sequence : public primitive_base<reverse_sequence> {
|
||||
}
|
||||
|
||||
/// @brief The axis which is partially reversed.
|
||||
int32_t seq_axis;
|
||||
int32_t seq_axis = 0;
|
||||
/// @brief The axis along which reversal is performed.
|
||||
int32_t batch_axis;
|
||||
int32_t batch_axis = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -51,18 +51,18 @@ struct roi_align : public primitive_base<roi_align> {
|
||||
aligned_mode{aligned_mode} {}
|
||||
|
||||
/// @brief Height of the ROI output feature map.
|
||||
int pooled_h;
|
||||
int pooled_h = 0;
|
||||
/// @brief Width of the ROI output feature map.
|
||||
int pooled_w;
|
||||
int pooled_w = 0;
|
||||
/// @brief Number of bins over height and width to use to calculate each output feature map element.
|
||||
int sampling_ratio;
|
||||
int sampling_ratio = 0;
|
||||
/// @brief multiplicative spatial scale factor to translate ROI coordinates
|
||||
/// from their input spatial scale to the scale used when pooling.
|
||||
float spatial_scale;
|
||||
float spatial_scale = false;
|
||||
/// @brief Method to perform pooling to produce output feature map elements.
|
||||
PoolingMode pooling_mode;
|
||||
PoolingMode pooling_mode = PoolingMode::max;
|
||||
/// @brief Method to coordinate alignment.
|
||||
AlignedMode aligned_mode;
|
||||
AlignedMode aligned_mode = AlignedMode::asymmetric;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -31,7 +31,7 @@ struct scatter_elements_update : public primitive_base<scatter_elements_update>
|
||||
: primitive_base(id, {data, idx, idupd}, {output_padding}), axis(axis) {}
|
||||
|
||||
/// @brief ScatterElementsUpdate axis
|
||||
int64_t axis;
|
||||
int64_t axis = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -31,7 +31,7 @@ struct scatter_nd_update : public primitive_base<scatter_nd_update> {
|
||||
: primitive_base(id, {data, idx, idupd}, {output_padding}), indices_rank(indices_rank) {}
|
||||
|
||||
/// @brief ScatterNDUpdate indices_rank
|
||||
size_t indices_rank;
|
||||
size_t indices_rank = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -40,7 +40,7 @@ struct scatter_update : public primitive_base<scatter_update> {
|
||||
: primitive_base(id, {dict, idx, idupd}, {output_padding}), axis(axis) {}
|
||||
|
||||
/// @brief ScatterUpdate axis
|
||||
int64_t axis;
|
||||
int64_t axis = 0;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -36,10 +36,9 @@ struct shape_of : public primitive_base<shape_of> {
|
||||
const input_info& input,
|
||||
const data_types output_data_type,
|
||||
const padding& output_padding = padding())
|
||||
: primitive_base(id, {input}, {output_padding}, {optional_data_type{output_data_type}})
|
||||
, input_rank(0) {}
|
||||
: primitive_base(id, {input}, {output_padding}, {optional_data_type{output_data_type}}) {}
|
||||
|
||||
size_t input_rank;
|
||||
size_t input_rank = 0;
|
||||
|
||||
bool operator==(const primitive& rhs) const override {
|
||||
if (!compare_common_params(rhs))
|
||||
|
@ -32,7 +32,7 @@ struct shuffle_channels : public primitive_base<shuffle_channels> {
|
||||
/// @brief The number of groups to split the channel dimension. This number must evenly divide the channel dimension size.
|
||||
int32_t group;
|
||||
/// @brief The index of the channel dimension (default is 1).
|
||||
int32_t axis;
|
||||
int32_t axis = 1;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -41,7 +41,7 @@ struct softmax : public primitive_base<softmax> {
|
||||
/// - when softmax dimension is set to 2 (y dim) each input column is normalized independently,
|
||||
/// - when softmax dimension is set to 3 (x dim) each input row is normalized independently.
|
||||
|
||||
int64_t dimension;
|
||||
int64_t dimension = 1;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -64,10 +64,10 @@ struct space_to_depth : public primitive_base<space_to_depth> {
|
||||
: primitive_base(id, {input}, {output_padding}), mode(mode), block_size(block_size) {}
|
||||
|
||||
/// @brief Depth mode.
|
||||
depth_mode mode;
|
||||
depth_mode mode = depth_mode::depth_first;
|
||||
|
||||
/// @brief Block size.
|
||||
size_t block_size;
|
||||
size_t block_size = 1;
|
||||
|
||||
size_t hash() const override {
|
||||
size_t seed = primitive::hash();
|
||||
|
@ -213,7 +213,7 @@ struct loop_impl : typed_primitive_impl<loop> {
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t _max_iteration;
|
||||
int64_t _max_iteration = 0;
|
||||
std::vector<cldnn::loop::backedge_mapping> _back_edges;
|
||||
};
|
||||
|
||||
|
@ -158,9 +158,9 @@ public:
|
||||
&& cp.weights.X().v == 1 && cp.weights.Y().v > 1
|
||||
&& !(cp.groups == cp.inputs[0].Feature().v && cp.inputs[0].Feature().v == cp.outputs[0].Feature().v)) {
|
||||
auto can_swap = [](const kernel_selector::Tensor::DataTensor& dt) -> bool {
|
||||
auto x_channel_idx = kernel_selector::Tensor::DataTensor::Channelndex(dt.GetLayout(),
|
||||
kernel_selector::Tensor::DataChannelName::X);
|
||||
auto x_axis_dim = dt.GetDims()[static_cast<uint32_t>(x_channel_idx)];
|
||||
auto x_channel_idx = static_cast<uint32_t>(kernel_selector::Tensor::DataTensor::Channelndex(dt.GetLayout(),
|
||||
kernel_selector::Tensor::DataChannelName::X));
|
||||
auto x_axis_dim = dt.GetDims()[x_channel_idx];
|
||||
return (x_axis_dim.pad.Total() == 0 && x_axis_dim.v == 1);
|
||||
};
|
||||
|
||||
|
@ -224,9 +224,9 @@ protected:
|
||||
}
|
||||
|
||||
kernel_arguments_data get_arguments_impl(const typed_primitive_inst<PType>& instance) const override {
|
||||
for (size_t k = 0; k < _kernels.size(); ++k) {
|
||||
if (_kernels.size()) {
|
||||
auto args = get_arguments(instance);
|
||||
args.scalars = &_kernel_data.kernels[k].params.scalars;
|
||||
args.scalars = &_kernel_data.kernels[0].params.scalars;
|
||||
|
||||
for (const auto& m : instance.get_intermediates_memories()) {
|
||||
args.intermediates.push_back(m);
|
||||
|
@ -21,7 +21,8 @@ struct border_params : public base_params {
|
||||
ArgType end_type;
|
||||
ArgType pad_value_type;
|
||||
|
||||
border_params() : base_params(KernelType::BORDER), b_type(BorderType::CONSTANT), border_value(0.0f) {}
|
||||
border_params() : base_params(KernelType::BORDER), b_type(BorderType::CONSTANT), border_value(0.0f),
|
||||
begin_type(ArgType::Constant), end_type(ArgType::Constant), pad_value_type(ArgType::Constant) {}
|
||||
|
||||
ParamsKey GetParamsKey() const override {
|
||||
ParamsKey k = base_params::GetParamsKey();
|
||||
|
Loading…
Reference in New Issue
Block a user