DOCS shift to rst - Openvino Ecosystem article update (#16050)

Co-authored-by: Tatiana Savina <tatiana.savina@intel.com>
This commit is contained in:
Maciej Smyk 2023-03-15 08:51:49 +01:00 committed by GitHub
parent e4f44b19fd
commit 4b7b3fb0ae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -12,74 +12,97 @@
openvino_inference_engine_tools_compile_tool_README
openvino_docs_tuning_utilities
@endsphinxdirective
OpenVINO™ is not just one tool. It is an expansive ecosystem of utilities, providing a comprehensive workflow for deep learning solution development. Learn more about each of them to reach the full potential of OpenVINO™ Toolkit.
### Neural Network Compression Framework (NNCF)
Neural Network Compression Framework (NNCF)
###########################################
A suite of advanced algorithms for Neural Network inference optimization with minimal accuracy drop. NNCF applies quantization, filter pruning, binarization and sparsity algorithms to PyTorch and TensorFlow models during training.
More resources:
* [Documentation](@ref tmo_introduction)
* [GitHub](https://github.com/openvinotoolkit/nncf)
* [PyPI](https://pypi.org/project/nncf/)
### OpenVINO™ Training Extensions
* :doc:`Documentation <tmo_introduction>`
* `GitHub <https://github.com/openvinotoolkit/nncf>`__
* `PyPI <https://pypi.org/project/nncf/>`__
OpenVINO™ Training Extensions
#############################
A convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference.
More resources:
* [Overview](@ref ote_documentation)
* [GitHub](https://github.com/openvinotoolkit/training_extensions)
* [Documentation](https://openvinotoolkit.github.io/training_extensions/stable/guide/get_started/introduction.html)
* :doc:`Overview <ote_documentation>`
* `GitHub <https://github.com/openvinotoolkit/training_extensions>`__
* `Documentation <https://openvinotoolkit.github.io/training_extensions/stable/guide/get_started/introduction.html>`__
OpenVINO™ Security Add-on
#########################
### OpenVINO™ Security Add-on
A solution for Model Developers and Independent Software Vendors to use secure packaging and secure model execution.
More resources:
* [documentation](https://docs.openvino.ai/latest/ovsa_get_started.html)
* [GitHub](https://github.com/openvinotoolkit/security_addon)
* `Documentation <https://docs.openvino.ai/latest/ovsa_get_started.html>`__
* `GitHub <https://github.com/openvinotoolkit/security_addon>`__
### OpenVINO™ integration with TensorFlow (OVTF)
OpenVINO™ integration with TensorFlow (OVTF)
############################################
A solution empowering TensorFlow developers with OpenVINO's optimization capabilities. With just two lines of code in your application, you can offload inference to OpenVINO, while keeping the TensorFlow API.
More resources:
* [documentation](https://github.com/openvinotoolkit/openvino_tensorflow)
* [PyPI](https://pypi.org/project/openvino-tensorflow/)
* [GitHub](https://github.com/openvinotoolkit/openvino_tensorflow)
### DL Streamer
* `Documentation <https://github.com/openvinotoolkit/openvino_tensorflow>`__
* `PyPI <https://pypi.org/project/openvino-tensorflow/>`__
* `GitHub <https://github.com/openvinotoolkit/openvino_tensorflow>`__
DL Streamer
###########
A streaming media analytics framework, based on the GStreamer multimedia framework, for creating complex media analytics pipelines.
More resources:
* [documentation on GitHub](https://dlstreamer.github.io/index.html)
* [installation Guide on GitHub](https://github.com/openvinotoolkit/dlstreamer_gst/wiki/Install-Guide)
* `Documentation on GitHub <https://dlstreamer.github.io/index.html>`__
* `Installation Guide on GitHub <https://github.com/openvinotoolkit/dlstreamer_gst/wiki/Install-Guide>`__
### DL Workbench
A web-based tool for deploying deep learning models. Built on the core of OpenVINO and equipped with a graphics user interface, DL Workbench is a great way to explore the possibilities of the OpenVINO workflow, import, analyze, optimize, and build your pre-trained models. You can do all that by visiting [Intel® Developer Cloud](https://software.intel.com/content/www/us/en/develop/tools/devcloud.html) and launching DL Workbench online.
DL Workbench
############
A web-based tool for deploying deep learning models. Built on the core of OpenVINO and equipped with a graphics user interface, DL Workbench is a great way to explore the possibilities of the OpenVINO workflow, import, analyze, optimize, and build your pre-trained models. You can do all that by visiting `Intel® Developer Cloud <https://software.intel.com/content/www/us/en/develop/tools/devcloud.html>`__ and launching DL Workbench online.
More resources:
* [Documentation](https://docs.openvino.ai/2022.3/workbench_docs_Workbench_DG_Introduction.html)
* [Docker Hub](https://hub.docker.com/r/openvino/workbench)
* [PyPI](https://pypi.org/project/openvino-workbench/)
### Computer Vision Annotation Tool (CVAT)
* `Documentation <https://docs.openvino.ai/2022.3/workbench_docs_Workbench_DG_Introduction.html>`__
* `Docker Hub <https://hub.docker.com/r/openvino/workbench>`__
* `PyPI <https://pypi.org/project/openvino-workbench/>`__
Computer Vision Annotation Tool (CVAT)
######################################
An online, interactive video and image annotation tool for computer vision purposes.
More resources:
* [documentation on GitHub](https://opencv.github.io/cvat/docs/)
* [web application](https://cvat.org/)
* [Docker Hub](https://hub.docker.com/r/openvino/cvat_server)
* [GitHub](https://github.com/openvinotoolkit/cvat)
### Dataset Management Framework (Datumaro)
* `Documentation on GitHub <https://opencv.github.io/cvat/docs/>`__
* `Web application <https://www.cvat.ai/>`__
* `Docker Hub <https://hub.docker.com/r/openvino/cvat_server>`__
* `GitHub <https://github.com/openvinotoolkit/cvat>`__
Dataset Management Framework (Datumaro)
#######################################
A framework and CLI tool to build, transform, and analyze datasets.
More resources:
* [documentation on GitHub](https://openvinotoolkit.github.io/datumaro/docs/)
* [PyPI](https://pypi.org/project/datumaro/)
* [GitHub](https://github.com/openvinotoolkit/datumaro)
* `Documentation on GitHub <https://openvinotoolkit.github.io/datumaro/docs/>`__
* `PyPI <https://pypi.org/project/datumaro/>`__
* `GitHub <https://github.com/openvinotoolkit/datumaro>`__
@endsphinxdirective