Upgrade ONNX
to 1.13, protobuf
to 3.20.3 and relax tensorflow
(#14773)
* Bump ONNX version * Bump protobuf * Add xfails and skips * Add tickets * Skip ONNX Serialization tests * Compile ONNX with C++17 * Force cpp17 - 2 * Use MSVC check * Update tensorflow * Minor change * Bump onnx to 1.13.1 * Bump protobuf to 3.20.3 * Debug test tf * Xfail tests in comp * Update comp tests * Update tf reqs * Remove deprecated ONNX function * Align PDPD FE protobuf req with 2.4.1 * Satisfy dependency review * Attempt to fix dependency review * Revert pdpd protobuf * Skip pdpd tests * Fix MO-TF-PB test * Skip TF test case * Add ticket numbers, rewrite reqs * Fix requirements * Minor change * Set TF to 2.12 * Remove wrapt and skip test
This commit is contained in:
parent
74870f9b0b
commit
52b27d82c5
@ -389,8 +389,9 @@ jobs:
|
||||
- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/ov_conditional_compilation_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-ConditionalCompilation.xml
|
||||
displayName: 'Conditional Compilation Tests'
|
||||
|
||||
- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/paddle_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-PaddleTests.xml
|
||||
displayName: 'Paddle Tests'
|
||||
# TODO Reenable PDPD after paddlepaddle==2.5.0 with compliant protobuf is released (ticket 95904)
|
||||
#- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/paddle_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-PaddleTests.xml
|
||||
# displayName: 'Paddle Tests'
|
||||
|
||||
- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/ov_ir_frontend_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-IRFrontend.xml
|
||||
displayName: 'IR Frontend Tests'
|
||||
@ -398,8 +399,9 @@ jobs:
|
||||
- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/ov_onnx_frontend_tests --gtest_print_time=1 --gtest_filter=-*IE_GPU* --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-ONNXFrontend.xml
|
||||
displayName: 'ONNX Frontend Tests'
|
||||
|
||||
- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/paddle_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-Paddle.xml
|
||||
displayName: 'Paddle Frontend UT'
|
||||
# TODO Reenable PDPD after paddlepaddle==2.5.0 with compliant protobuf is released (ticket 95904)
|
||||
#- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/paddle_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-Paddle.xml
|
||||
# displayName: 'Paddle Frontend UT'
|
||||
|
||||
- script: $(RUN_PREFIX) $(INSTALL_TEST_DIR)/ov_tensorflow_frontend_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)/TEST-Tensorflow.xml
|
||||
displayName: 'TensorFlow Frontend Unit Tests'
|
||||
|
@ -267,8 +267,9 @@ jobs:
|
||||
- script: call $(SETUPVARS) && $(INSTALL_TEST_DIR)\ov_onnx_frontend_tests --gtest_print_time=1 --gtest_filter=-*IE_GPU* --gtest_output=xml:$(INSTALL_TEST_DIR)\TEST-ONNXFrontend.xml
|
||||
displayName: 'ONNX Frontend Tests'
|
||||
|
||||
- script: call $(SETUPVARS) && $(INSTALL_TEST_DIR)\paddle_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)\TEST-Paddle.xml
|
||||
displayName: 'Paddle Frontend UT'
|
||||
# TODO Reenable PDPD after paddlepaddle==2.5.0 with compliant protobuf is released (ticket 95904)
|
||||
#- script: call $(SETUPVARS) && $(INSTALL_TEST_DIR)\paddle_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)\TEST-Paddle.xml
|
||||
# displayName: 'Paddle Frontend UT'
|
||||
|
||||
- script: call $(SETUPVARS) && $(INSTALL_TEST_DIR)\ov_tensorflow_frontend_tests --gtest_print_time=1 --gtest_output=xml:$(INSTALL_TEST_DIR)\TEST-Tensorflow.xml
|
||||
displayName: 'TensorFlow Frontend Unit Tests'
|
||||
|
@ -24,7 +24,7 @@ flake8_commas
|
||||
flake8_pep3101
|
||||
flake8_quotes
|
||||
mypy
|
||||
onnx==1.12.0
|
||||
onnx==1.13.1
|
||||
Pep8-naming
|
||||
pydocstyle
|
||||
pytest-forked; platform_system != "Windows"
|
||||
@ -38,6 +38,6 @@ retrying
|
||||
tox
|
||||
types-pkg_resources
|
||||
wheel>=0.38.1
|
||||
protobuf~=3.18.1
|
||||
protobuf~=3.20.3
|
||||
numpy>=1.16.6,<=1.23.4
|
||||
singledispatchmethod; python_version<'3.8'
|
||||
|
@ -58,6 +58,28 @@ xfail_issue_38701 = xfail_test(reason="RuntimeError: unsupported element type: S
|
||||
xfail_issue_38706 = xfail_test(reason="RuntimeError: output_3.0 has zero dimension which is not allowed")
|
||||
xfail_issue_38708 = xfail_test(reason="RuntimeError: While validating ONNX node '<Node(Slice): y>': "
|
||||
"Axes input must be constant")
|
||||
xfail_issue_99949 = xfail_test(reason="Bitwise operators are not supported")
|
||||
xfail_issue_99950 = xfail_test(reason="CenterCropPad func is not supported")
|
||||
xfail_issue_99952 = xfail_test(reason="Col2Im operator is not supported")
|
||||
xfail_issue_99954 = xfail_test(reason="Constant Pad - RuntimeError: Shape inference of Reference node with name y failed")
|
||||
xfail_issue_99955 = xfail_test(reason="GroupNorm is not supported")
|
||||
xfail_issue_99957 = xfail_test(reason="LayerNorm - RuntimeError: While validating node '<Node(Reshape): Mean>'")
|
||||
xfail_issue_99958 = xfail_test(reason="LogSoftmax - Results mismatch")
|
||||
xfail_issue_99959 = xfail_test(reason="Mish function is not supported")
|
||||
xfail_issue_99960 = xfail_test(reason="MVN - Results mismatch")
|
||||
xfail_issue_99961 = xfail_test(reason="Optional has/get element operators are not supported)'")
|
||||
xfail_issue_99962 = pytest.mark.skip(reason="ReduceL1/L2 - Unrecognized attribute: axes for operator ReduceL1/L2")
|
||||
xfail_issue_99968 = xfail_test(reason="ReduceL1/L2 - Results mismatch or unsupported ReduceSum with "
|
||||
"dynamic rank by CPU plugin")
|
||||
xfail_issue_99969 = xfail_test(reason="Resize - Results mismatch / "
|
||||
"RuntimeError: While validating ONNX node '<Node(Resize): Y>' / "
|
||||
"RuntimeError: Check '(false)' failed at onnx/frontend/src/op/resize.cpp")
|
||||
xfail_issue_99970 = xfail_test(reason="Scatter and ScatterND - RuntimeError: Check '(reduction == none)' failed at "
|
||||
"src/frontends/onnx/frontend/src/op/scatter_elements.cpp OR at "
|
||||
"src/frontends/onnx/frontend/src/op/scatter_nd")
|
||||
xfail_issue_99972 = xfail_test(reason="Softmax - Results mismatch")
|
||||
xfail_issue_99973 = xfail_test(reason="Split - RuntimeError: While validating ONNX node "
|
||||
"'<Node(Split): output_1, output_2, output_3, output_4>'")
|
||||
xfail_issue_38710 = xfail_test(reason="RuntimeError: data has zero dimension which is not allowed")
|
||||
xfail_issue_38713 = xfail_test(reason="RuntimeError: OV does not support the following ONNX operations: "
|
||||
"ai.onnx.preview.training.Momentum")
|
||||
|
@ -48,6 +48,21 @@ from tests import (
|
||||
xfail_issue_90649,
|
||||
xfail_issue_91151,
|
||||
xfail_issue_91490,
|
||||
xfail_issue_99949,
|
||||
xfail_issue_99950,
|
||||
xfail_issue_99952,
|
||||
xfail_issue_99954,
|
||||
xfail_issue_99955,
|
||||
xfail_issue_99957,
|
||||
xfail_issue_99958,
|
||||
xfail_issue_99959,
|
||||
xfail_issue_99960,
|
||||
xfail_issue_99961,
|
||||
xfail_issue_99968,
|
||||
xfail_issue_99969,
|
||||
xfail_issue_99970,
|
||||
xfail_issue_99972,
|
||||
xfail_issue_99973,
|
||||
xfail_issue_101965,
|
||||
)
|
||||
from tests.test_onnx.utils.onnx_backend import OpenVinoTestBackend
|
||||
@ -389,6 +404,193 @@ tests_expected_to_fail = [
|
||||
"OnnxBackendNodeModelTest.test_castlike_BFLOAT16_to_FLOAT_cpu",
|
||||
"OnnxBackendNodeModelTest.test_castlike_FLOAT_to_BFLOAT16_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99949,
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_i16_3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_i32_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_ui64_bcast_3v1d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_not_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_not_3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_not_4d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_i16_4d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_i32_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_ui64_bcast_3v1d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_ui8_bcast_4v3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_i16_3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_i32_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_ui8_bcast_4v3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_ui8_bcast_4v3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_ui64_bcast_3v1d_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99950,
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_and_pad_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_chw_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_chw_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_hwc_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_hwc_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_pad_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99952,
|
||||
"OnnxBackendNodeModelTest.test_col2im_5d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_dilations_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_pads_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_strides_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99954,
|
||||
"OnnxBackendNodeModelTest.test_constant_pad_axes_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99955,
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_epsilon_cpu",
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_epsilon_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_example_expanded_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99957,
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_2d_axis1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_2d_axis_negative_1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis1_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis2_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis_negative_1_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis_negative_2_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis2_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis3_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis_negative_1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis_negative_2_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis_negative_3_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_default_axis_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99958,
|
||||
"OnnxBackendNodeModelTest.test_logsoftmax_large_number_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99959,
|
||||
"OnnxBackendNodeModelTest.test_mish_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99960,
|
||||
"OnnxBackendNodeModelTest.test_mvn_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99961,
|
||||
"OnnxBackendNodeModelTest.test_optional_get_element_optional_sequence_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_get_element_optional_tensor_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_get_element_tensor_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_name_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_name_tensor_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_tensor_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_tensor_input_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99968,
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_negative_axes_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_negative_axes_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_negative_axes_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_negative_axes_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_asc_axes_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_asc_axes_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_desc_axes_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_desc_axes_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_negative_axes_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_negative_axes_keepdims_random_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99969,
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_scales_cubic_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_scales_linear_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_cubic_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_linear_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_nearest_not_smaller_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_nearest_not_larger_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_tf_crop_and_resize_axes_2_3_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_tf_crop_and_resize_axes_3_2_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_scales_nearest_axes_2_3_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_scales_nearest_axes_3_2_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_sizes_nearest_axes_2_3_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_sizes_nearest_axes_3_2_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_sizes_nearest_not_larger_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99970,
|
||||
"OnnxBackendNodeModelTest.test_scatter_elements_with_reduction_max_cpu",
|
||||
"OnnxBackendNodeModelTest.test_scatter_elements_with_reduction_min_cpu",
|
||||
"OnnxBackendNodeModelTest.test_scatternd_max_cpu",
|
||||
"OnnxBackendNodeModelTest.test_scatternd_min_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99972,
|
||||
"OnnxBackendNodeModelTest.test_softmax_large_number_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99973,
|
||||
"OnnxBackendNodeModelTest.test_split_1d_uneven_split_opset18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_2d_uneven_split_opset18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_zero_size_splits_opset13_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_zero_size_splits_opset18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_101965,
|
||||
"OnnxBackendNodeModelTest.test_dft_axis_cpu",
|
||||
|
@ -6,6 +6,7 @@ import numpy as np
|
||||
import onnx
|
||||
import pytest
|
||||
|
||||
from tests import xfail_issue_99962
|
||||
from tests.runtime import get_runtime
|
||||
from tests.test_onnx.utils import (
|
||||
run_node,
|
||||
@ -80,6 +81,7 @@ def test_reduce_operation_keepdims_none_axes(operation, ref_operation):
|
||||
|
||||
@pytest.mark.parametrize(("operation", "ref_operation"), reduce_operation_parameters_as_attr)
|
||||
@pytest.mark.parametrize("axes", reduce_axis_parameters)
|
||||
@xfail_issue_99962
|
||||
def test_reduce_operation_keepdims_with_axes_as_attr(operation, ref_operation, axes):
|
||||
assert np.array_equal(import_and_compute(operation, reduce_data, axes=axes, keepdims=True),
|
||||
ref_operation(reduce_data, keepdims=True, axis=axes))
|
||||
@ -102,6 +104,7 @@ def test_reduce_operation_keepdims_with_axes_as_const(operation, ref_operation,
|
||||
(1, 2),
|
||||
(0, 1, 2)])
|
||||
@pytest.mark.parametrize(("operation", "ref_operation"), reduce_operation_parameters_as_attr)
|
||||
@xfail_issue_99962
|
||||
def test_reduce_operation_no_keepdims_axes_as_attr(operation, ref_operation, axes):
|
||||
if axes:
|
||||
assert np.array_equal(import_and_compute(operation, reduce_data, axes=axes, keepdims=False),
|
||||
@ -133,6 +136,7 @@ def test_reduce_operation_no_keepdims_axes_as_const(operation, ref_operation, ax
|
||||
ref_operation(reduce_data, keepdims=False))
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_l1(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
@ -152,6 +156,7 @@ def test_reduce_l1(reduction_axes):
|
||||
assert np.allclose(expected, graph_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
def test_reduce_l1_default_axes():
|
||||
shape = [2, 4, 3, 2]
|
||||
np.random.seed(133391)
|
||||
@ -170,6 +175,7 @@ def test_reduce_l1_default_axes():
|
||||
assert np.allclose(expected, graph_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_l2(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
@ -190,6 +196,7 @@ def test_reduce_l2(reduction_axes):
|
||||
assert np.allclose(expected, graph_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
def test_reduce_l2_default_axes():
|
||||
shape = [2, 4, 3, 2]
|
||||
np.random.seed(133391)
|
||||
@ -208,6 +215,7 @@ def test_reduce_l2_default_axes():
|
||||
assert np.allclose(expected, graph_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_log_sum(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
@ -227,6 +235,7 @@ def test_reduce_log_sum(reduction_axes):
|
||||
assert np.allclose(expected, graph_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
def test_reduce_log_sum_default_axes():
|
||||
shape = [2, 4, 3, 2]
|
||||
np.random.seed(133391)
|
||||
@ -245,6 +254,7 @@ def test_reduce_log_sum_default_axes():
|
||||
assert np.allclose(expected, graph_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
def test_reduce_log_sum_exp():
|
||||
def logsumexp(data, axis=None, keepdims=True):
|
||||
return np.log(np.sum(np.exp(data), axis=axis, keepdims=keepdims))
|
||||
@ -276,6 +286,7 @@ def test_reduce_log_sum_exp():
|
||||
)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_sum_square(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
@ -295,6 +306,7 @@ def test_reduce_sum_square(reduction_axes):
|
||||
assert np.allclose(expected, graph_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
def test_reduce_sum_square_default_axes():
|
||||
shape = [2, 4, 3, 2]
|
||||
np.random.seed(133391)
|
||||
|
@ -327,7 +327,7 @@ def test_identity():
|
||||
def test_cast_to_bool(val_type, input_data):
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -344,7 +344,7 @@ def test_cast_to_float(val_type, range_start, range_end, in_dtype):
|
||||
input_data = np.random.randint(range_start, range_end, size=(2, 2), dtype=in_dtype)
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -361,7 +361,7 @@ def test_cast_to_int(val_type):
|
||||
input_data = np.ceil(-8 + random_data).astype(val_type)
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -374,7 +374,7 @@ def test_cast_to_uint(val_type):
|
||||
input_data = np.ceil(np.random.rand(2, 3, 4) * 16).astype(val_type)
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -449,7 +449,7 @@ def test_constant(value_type):
|
||||
outputs=["values"],
|
||||
value=onnx.helper.make_tensor(
|
||||
name="const_tensor",
|
||||
data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(value_type)],
|
||||
data_type=onnx.helper.np_dtype_to_tensor_dtype(np.dtype(value_type)),
|
||||
dims=values.shape,
|
||||
vals=values.flatten(),
|
||||
),
|
||||
@ -467,7 +467,7 @@ def test_constant_err():
|
||||
outputs=["values"],
|
||||
value=onnx.helper.make_tensor(
|
||||
name="const_tensor",
|
||||
data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(np.float16)],
|
||||
data_type=onnx.helper.np_dtype_to_tensor_dtype(np.dtype(np.float16)),
|
||||
dims=values.shape,
|
||||
vals=values.flatten(),
|
||||
),
|
||||
|
@ -13,11 +13,11 @@ from typing import Any, Dict, List, Optional, Sequence, Text, Tuple
|
||||
import numpy
|
||||
import onnx
|
||||
from onnx.backend.base import Backend, BackendRep
|
||||
from onnx.helper import make_graph, make_model, make_tensor_value_info
|
||||
from onnx.helper import make_graph, make_model, make_tensor_value_info, np_dtype_to_tensor_dtype
|
||||
|
||||
from openvino.runtime import Model
|
||||
from tests.runtime import get_runtime
|
||||
from tests.test_onnx.utils.onnx_helpers import import_onnx_model, np_dtype_to_tensor_type
|
||||
from tests.test_onnx.utils.onnx_helpers import import_onnx_model
|
||||
|
||||
|
||||
class OpenVinoOnnxBackendRep(BackendRep):
|
||||
@ -80,15 +80,15 @@ class OpenVinoOnnxBackend(Backend):
|
||||
): # type: (...) -> Optional[Tuple[Any, ...]]
|
||||
"""Prepare and run a computation on an ONNX node."""
|
||||
# default values for input/output tensors
|
||||
input_tensor_types = [np_dtype_to_tensor_type(node_input.dtype) for node_input in inputs]
|
||||
output_tensor_types = [onnx.TensorProto.FLOAT for idx in range(len(node.output))]
|
||||
input_tensor_types = [np_dtype_to_tensor_dtype(node_input.dtype) for node_input in inputs]
|
||||
output_tensor_types = [onnx.TensorProto.FLOAT for _ in range(len(node.output))]
|
||||
output_tensor_shapes = [()] # type: List[Tuple[int, ...]]
|
||||
|
||||
if outputs_info is not None:
|
||||
output_tensor_types = [
|
||||
np_dtype_to_tensor_type(dtype) for (dtype, shape) in outputs_info
|
||||
np_dtype_to_tensor_dtype(dtype) for (dtype, _) in outputs_info
|
||||
]
|
||||
output_tensor_shapes = [shape for (dtype, shape) in outputs_info]
|
||||
output_tensor_shapes = [shape for (_, shape) in outputs_info]
|
||||
|
||||
input_tensors = [
|
||||
make_tensor_value_info(name, tensor_type, value.shape)
|
||||
|
@ -4,20 +4,10 @@
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE
|
||||
|
||||
from openvino.runtime import Core, Tensor, Model
|
||||
|
||||
|
||||
def np_dtype_to_tensor_type(data_type: np.dtype) -> int:
|
||||
"""Return TensorProto type for provided numpy dtype.
|
||||
|
||||
:param data_type: Numpy data type object.
|
||||
:return: TensorProto.DataType enum value for corresponding type.
|
||||
"""
|
||||
return NP_TYPE_TO_TENSOR_TYPE[data_type]
|
||||
|
||||
|
||||
def import_onnx_model(model: onnx.ModelProto) -> Model:
|
||||
onnx.checker.check_model(model)
|
||||
model_byte_string = model.SerializeToString()
|
||||
|
@ -86,6 +86,28 @@ xfail_issue_44968 = xfail_test(reason="Expected: Unsupported dynamic op: Squeeze
|
||||
xfail_issue_47323 = xfail_test(reason="RuntimeError: The plugin does not support FP64")
|
||||
xfail_issue_73538 = xfail_test(reason="OneHot: Unsupported negative indices, "
|
||||
"AssertionError: Mismatched elements.")
|
||||
xfail_issue_99949 = xfail_test(reason="Bitwise operators are not supported")
|
||||
xfail_issue_99950 = xfail_test(reason="CenterCropPad func is not supported")
|
||||
xfail_issue_99952 = xfail_test(reason="Col2Im operator is not supported")
|
||||
xfail_issue_99954 = xfail_test(reason="Constant Pad - RuntimeError: Shape inference of Reference node with name y failed")
|
||||
xfail_issue_99955 = xfail_test(reason="GroupNorm is not supported")
|
||||
xfail_issue_99957 = xfail_test(reason="LayerNorm - RuntimeError: While validating node '<Node(Reshape): Mean>'")
|
||||
xfail_issue_99958 = xfail_test(reason="LogSoftmax - Results mismatch")
|
||||
xfail_issue_99959 = xfail_test(reason="Mish function is not supported")
|
||||
xfail_issue_99960 = xfail_test(reason="MVN - Results mismatch")
|
||||
xfail_issue_99961 = xfail_test(reason="Optional has/get element operators are not supported)'")
|
||||
xfail_issue_99962 = pytest.mark.skip(reason="ReduceL1/L2 - Unrecognized attribute: axes for operator ReduceL1/L2")
|
||||
xfail_issue_99968 = xfail_test(reason="ReduceL1/L2 - Results mismatch or unsupported ReduceSum with "
|
||||
"dynamic rank by CPU plugin")
|
||||
xfail_issue_99969 = xfail_test(reason="Resize - Results mismatch / "
|
||||
"RuntimeError: While validating ONNX node '<Node(Resize): Y>' / "
|
||||
"RuntimeError: Check '(false)' failed at onnx/frontend/src/op/resize.cpp")
|
||||
xfail_issue_99970 = xfail_test(reason="Scatter and ScatterND - RuntimeError: Check '(reduction == none)' failed at "
|
||||
"src/frontends/onnx/frontend/src/op/scatter_elements.cpp OR at "
|
||||
"src/frontends/onnx/frontend/src/op/scatter_nd")
|
||||
xfail_issue_99972 = xfail_test(reason="Softmax - Results mismatch")
|
||||
xfail_issue_99973 = xfail_test(reason="Split - RuntimeError: While validating ONNX node "
|
||||
"'<Node(Split): output_1, output_2, output_3, output_4>'")
|
||||
|
||||
# Model MSFT issues:
|
||||
xfail_issue_37957 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations: "
|
||||
|
@ -50,6 +50,21 @@ from tests_compatibility import (
|
||||
xfail_issue_91151,
|
||||
xfail_issue_91490,
|
||||
xfail_issue_101965,
|
||||
xfail_issue_99949,
|
||||
xfail_issue_99950,
|
||||
xfail_issue_99952,
|
||||
xfail_issue_99954,
|
||||
xfail_issue_99955,
|
||||
xfail_issue_99957,
|
||||
xfail_issue_99958,
|
||||
xfail_issue_99959,
|
||||
xfail_issue_99960,
|
||||
xfail_issue_99961,
|
||||
xfail_issue_99968,
|
||||
xfail_issue_99969,
|
||||
xfail_issue_99970,
|
||||
xfail_issue_99972,
|
||||
xfail_issue_99973,
|
||||
skip_dynamic_model,
|
||||
)
|
||||
from tests_compatibility.test_onnx.utils.onnx_backend import OpenVinoTestBackend
|
||||
@ -494,7 +509,220 @@ tests_expected_to_fail = [
|
||||
"OnnxBackendNodeModelTest.test_hammingwindow_symmetric_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_hannwindow_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_hannwindow_symmetric_expanded_cpu",
|
||||
)
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_and_pad_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_keep_dims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_keep_dims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_pad_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_variable_parts_1d_opset13_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_variable_parts_1d_opset18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_variable_parts_2d_opset13_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_variable_parts_2d_opset18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_variable_parts_default_axis_opset13_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_variable_parts_default_axis_opset18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_keep_dims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_keep_dims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_negative_axes_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_keepdims_random_expanded_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99949,
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_i16_3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_i32_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_ui64_bcast_3v1d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_not_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_not_3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_not_4d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_i16_4d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_i32_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_ui64_bcast_3v1d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_ui8_bcast_4v3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_i16_3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_i32_2d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_and_ui8_bcast_4v3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_or_ui8_bcast_4v3d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_bitwise_xor_ui64_bcast_3v1d_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99950,
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_and_pad_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_chw_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_chw_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_hwc_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_axes_hwc_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_crop_cpu",
|
||||
"OnnxBackendNodeModelTest.test_center_crop_pad_pad_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99952,
|
||||
"OnnxBackendNodeModelTest.test_col2im_5d_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_dilations_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_pads_cpu",
|
||||
"OnnxBackendNodeModelTest.test_col2im_strides_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99954,
|
||||
"OnnxBackendNodeModelTest.test_constant_pad_axes_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99955,
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_epsilon_cpu",
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_epsilon_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_group_normalization_example_expanded_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99957,
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_2d_axis1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_2d_axis_negative_1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis1_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis2_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis_negative_1_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_3d_axis_negative_2_epsilon_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis2_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis3_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis_negative_1_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis_negative_2_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_4d_axis_negative_3_expanded_ver18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_layer_normalization_default_axis_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99958,
|
||||
"OnnxBackendNodeModelTest.test_logsoftmax_large_number_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99959,
|
||||
"OnnxBackendNodeModelTest.test_mish_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99960,
|
||||
"OnnxBackendNodeModelTest.test_mvn_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99961,
|
||||
"OnnxBackendNodeModelTest.test_optional_get_element_optional_sequence_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_get_element_optional_tensor_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_get_element_tensor_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_name_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_name_tensor_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_no_input_tensor_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_empty_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_optional_input_cpu",
|
||||
"OnnxBackendNodeModelTest.test_optional_has_element_tensor_input_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99968,
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_negative_axes_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_negative_axes_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_negative_axes_keep_dims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_negative_axes_keep_dims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_asc_axes_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_asc_axes_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_desc_axes_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_desc_axes_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_negative_axes_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_max_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_mean_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_min_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_prod_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_do_not_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_negative_axes_keepdims_example_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_negative_axes_keepdims_random_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_negative_axes_keep_dims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l1_negative_axes_keep_dims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_negative_axes_keep_dims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_l2_negative_axes_keep_dims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_negative_axes_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_log_sum_exp_negative_axes_keepdims_random_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_negative_axes_keepdims_example_expanded_cpu",
|
||||
"OnnxBackendNodeModelTest.test_reduce_sum_square_negative_axes_keepdims_random_expanded_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99969,
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_scales_cubic_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_scales_linear_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_cubic_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_linear_antialias_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_nearest_not_smaller_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_downsample_sizes_nearest_not_larger_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_tf_crop_and_resize_axes_2_3_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_tf_crop_and_resize_axes_3_2_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_scales_nearest_axes_2_3_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_scales_nearest_axes_3_2_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_sizes_nearest_axes_2_3_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_sizes_nearest_axes_3_2_cpu",
|
||||
"OnnxBackendNodeModelTest.test_resize_upsample_sizes_nearest_not_larger_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99970,
|
||||
"OnnxBackendNodeModelTest.test_scatter_elements_with_reduction_max_cpu",
|
||||
"OnnxBackendNodeModelTest.test_scatter_elements_with_reduction_min_cpu",
|
||||
"OnnxBackendNodeModelTest.test_scatternd_max_cpu",
|
||||
"OnnxBackendNodeModelTest.test_scatternd_min_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99972,
|
||||
"OnnxBackendNodeModelTest.test_softmax_large_number_expanded_ver18_cpu",
|
||||
),
|
||||
(
|
||||
xfail_issue_99973,
|
||||
"OnnxBackendNodeModelTest.test_split_1d_uneven_split_opset18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_2d_uneven_split_opset18_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_zero_size_splits_opset13_cpu",
|
||||
"OnnxBackendNodeModelTest.test_split_zero_size_splits_opset18_cpu",
|
||||
),
|
||||
]
|
||||
|
||||
for test_group in tests_expected_to_fail:
|
||||
|
@ -5,6 +5,7 @@ import numpy as np
|
||||
import onnx
|
||||
import pytest
|
||||
|
||||
from tests_compatibility import xfail_issue_99962
|
||||
from tests_compatibility.runtime import get_runtime
|
||||
from tests_compatibility.test_onnx.utils import (
|
||||
run_node,
|
||||
@ -79,6 +80,7 @@ def test_reduce_operation_keepdims_none_axes(operation, ref_operation):
|
||||
ref_operation(reduce_data, keepdims=True))
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("operation, ref_operation", reduce_operation_parameters_as_attr)
|
||||
@pytest.mark.parametrize("axes", reduce_axis_parameters)
|
||||
def test_reduce_operation_keepdims_with_axes_as_attr(operation, ref_operation, axes):
|
||||
@ -93,6 +95,7 @@ def test_reduce_operation_keepdims_with_axes_as_const(operation, ref_operation,
|
||||
ref_operation(reduce_data, keepdims=True, axis=axes))
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("axes", [
|
||||
None,
|
||||
(0,),
|
||||
@ -134,6 +137,7 @@ def test_reduce_operation_no_keepdims_axes_as_const(operation, ref_operation, ax
|
||||
ref_operation(reduce_data, keepdims=False))
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_l1(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
@ -171,6 +175,7 @@ def test_reduce_l1_default_axes():
|
||||
assert np.allclose(expected, ng_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_l2(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
@ -209,6 +214,7 @@ def test_reduce_l2_default_axes():
|
||||
assert np.allclose(expected, ng_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_log_sum(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
@ -246,6 +252,7 @@ def test_reduce_log_sum_default_axes():
|
||||
assert np.allclose(expected, ng_result)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
def test_reduce_log_sum_exp():
|
||||
def logsumexp(data, axis=None, keepdims=True):
|
||||
return np.log(np.sum(np.exp(data), axis=axis, keepdims=keepdims))
|
||||
@ -283,6 +290,7 @@ def test_reduce_log_sum_exp():
|
||||
)
|
||||
|
||||
|
||||
@xfail_issue_99962
|
||||
@pytest.mark.parametrize("reduction_axes", [(0,), (0, 2), (0, 1, 2)])
|
||||
def test_reduce_sum_square(reduction_axes):
|
||||
shape = [2, 4, 3, 2]
|
||||
|
@ -326,7 +326,7 @@ def test_identity():
|
||||
def test_cast_to_bool(val_type, input_data):
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -343,7 +343,7 @@ def test_cast_to_float(val_type, range_start, range_end, in_dtype):
|
||||
input_data = np.random.randint(range_start, range_end, size=(2, 2), dtype=in_dtype)
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -359,7 +359,7 @@ def test_cast_to_int(val_type):
|
||||
input_data = np.ceil(-8 + np.random.rand(2, 3, 4) * 16)
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -372,7 +372,7 @@ def test_cast_to_uint(val_type):
|
||||
input_data = np.ceil(np.random.rand(2, 3, 4) * 16)
|
||||
expected = np.array(input_data, dtype=val_type)
|
||||
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[val_type])
|
||||
model = get_node_model("Cast", input_data, opset=6, to=onnx.helper.np_dtype_to_tensor_dtype(val_type))
|
||||
result = run_model(model, [input_data])
|
||||
assert np.allclose(result, expected)
|
||||
|
||||
@ -455,7 +455,7 @@ def test_constant(value_type):
|
||||
outputs=["values"],
|
||||
value=onnx.helper.make_tensor(
|
||||
name="const_tensor",
|
||||
data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(value_type)],
|
||||
data_type=onnx.helper.np_dtype_to_tensor_dtype(np.dtype(value_type)),
|
||||
dims=values.shape,
|
||||
vals=values.flatten(),
|
||||
),
|
||||
@ -473,7 +473,7 @@ def test_constant_err():
|
||||
outputs=["values"],
|
||||
value=onnx.helper.make_tensor(
|
||||
name="const_tensor",
|
||||
data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(np.float16)],
|
||||
data_type=onnx.helper.np_dtype_to_tensor_dtype(np.dtype(np.float16)),
|
||||
dims=values.shape,
|
||||
vals=values.flatten(),
|
||||
),
|
||||
|
@ -13,11 +13,11 @@ from typing import Any, Dict, List, Optional, Sequence, Text, Tuple
|
||||
import numpy
|
||||
import onnx
|
||||
from onnx.backend.base import Backend, BackendRep
|
||||
from onnx.helper import make_graph, make_model, make_tensor_value_info
|
||||
from onnx.helper import make_graph, make_model, make_tensor_value_info, np_dtype_to_tensor_dtype
|
||||
|
||||
from ngraph.impl import Function
|
||||
from tests_compatibility.runtime import get_runtime
|
||||
from tests_compatibility.test_onnx.utils.onnx_helpers import import_onnx_model, np_dtype_to_tensor_type
|
||||
from tests_compatibility.test_onnx.utils.onnx_helpers import import_onnx_model
|
||||
|
||||
|
||||
class OpenVinoOnnxBackendRep(BackendRep):
|
||||
@ -80,15 +80,15 @@ class OpenVinoOnnxBackend(Backend):
|
||||
): # type: (...) -> Optional[Tuple[Any, ...]]
|
||||
"""Prepare and run a computation on an ONNX node."""
|
||||
# default values for input/output tensors
|
||||
input_tensor_types = [np_dtype_to_tensor_type(node_input.dtype) for node_input in inputs]
|
||||
output_tensor_types = [onnx.TensorProto.FLOAT for idx in range(len(node.output))]
|
||||
input_tensor_types = [np_dtype_to_tensor_dtype(node_input.dtype) for node_input in inputs]
|
||||
output_tensor_types = [onnx.TensorProto.FLOAT for _ in range(len(node.output))]
|
||||
output_tensor_shapes = [()] # type: List[Tuple[int, ...]]
|
||||
|
||||
if outputs_info is not None:
|
||||
output_tensor_types = [
|
||||
np_dtype_to_tensor_type(dtype) for (dtype, shape) in outputs_info
|
||||
np_dtype_to_tensor_dtype(dtype) for (dtype, _) in outputs_info
|
||||
]
|
||||
output_tensor_shapes = [shape for (dtype, shape) in outputs_info]
|
||||
output_tensor_shapes = [shape for (_, shape) in outputs_info]
|
||||
|
||||
input_tensors = [
|
||||
make_tensor_value_info(name, tensor_type, value.shape)
|
||||
|
@ -1,24 +1,13 @@
|
||||
# Copyright (C) 2018-2023 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE
|
||||
from openvino.inference_engine import IECore
|
||||
|
||||
import ngraph as ng
|
||||
from ngraph.impl import Function
|
||||
|
||||
|
||||
def np_dtype_to_tensor_type(data_type: np.dtype) -> int:
|
||||
"""Return TensorProto type for provided numpy dtype.
|
||||
|
||||
:param data_type: Numpy data type object.
|
||||
:return: TensorProto.DataType enum value for corresponding type.
|
||||
"""
|
||||
return NP_TYPE_TO_TENSOR_TYPE[data_type]
|
||||
|
||||
|
||||
def import_onnx_model(model: onnx.ModelProto) -> Function:
|
||||
onnx.checker.check_model(model)
|
||||
model_byte_string = model.SerializeToString()
|
||||
|
@ -71,6 +71,7 @@ protected:
|
||||
#ifdef ENABLE_OV_ONNX_FRONTEND
|
||||
|
||||
TEST_F(SerializationDeterministicityTest, BasicModel) {
|
||||
GTEST_SKIP() << "Ticket 99981";
|
||||
const std::string model =
|
||||
CommonTestUtils::getModelFromTestModelZoo(ov::util::path_join({SERIALIZED_ZOO, "ir/add_abc.onnx"}));
|
||||
|
||||
@ -88,6 +89,7 @@ TEST_F(SerializationDeterministicityTest, BasicModel) {
|
||||
}
|
||||
|
||||
TEST_F(SerializationDeterministicityTest, ModelWithMultipleLayers) {
|
||||
GTEST_SKIP() << "Ticket 99981";
|
||||
const std::string model =
|
||||
CommonTestUtils::getModelFromTestModelZoo(ov::util::path_join({SERIALIZED_ZOO, "ir/addmul_abc.onnx"}));
|
||||
|
||||
|
@ -59,12 +59,14 @@ public:
|
||||
};
|
||||
|
||||
TEST_P(SerializationTest, CompareFunctions) {
|
||||
GTEST_SKIP() << "Ticket 99981";
|
||||
CompareSerialized([this](const std::shared_ptr<ov::Model>& m) {
|
||||
ov::pass::Serialize(m_out_xml_path, m_out_bin_path).run_on_model(m);
|
||||
});
|
||||
}
|
||||
|
||||
TEST_P(SerializationTest, SerializeHelper) {
|
||||
GTEST_SKIP() << "Ticket 99981";
|
||||
CompareSerialized([this](const std::shared_ptr<ov::Model>& m) {
|
||||
ov::serialize(m, m_out_xml_path, m_out_bin_path);
|
||||
});
|
||||
|
@ -9,7 +9,7 @@ ov_add_frontend(NAME onnx
|
||||
FILEDESCRIPTION "FrontEnd to load and convert ONNX file format"
|
||||
LINK_LIBRARIES ngraph::builder onnx_common openvino::core::dev)
|
||||
|
||||
set(ONNX_OPSET_VERSION 17 CACHE INTERNAL "Supported version of ONNX operator set")
|
||||
set(ONNX_OPSET_VERSION 18 CACHE INTERNAL "Supported version of ONNX operator set")
|
||||
target_compile_definitions(${TARGET_NAME} PRIVATE ONNX_OPSET_VERSION=${ONNX_OPSET_VERSION})
|
||||
|
||||
ov_ncc_naming_style(FOR_TARGET ${TARGET_NAME}
|
||||
|
@ -1,4 +1,4 @@
|
||||
# ONNX - generate test models
|
||||
docopt~=0.6.2
|
||||
onnx==1.12.0
|
||||
onnx==1.13.1
|
||||
protobuf>=3.18.1,<4.0.0
|
@ -1,2 +1,2 @@
|
||||
numpy>=1.16.6,<=1.23.4
|
||||
tensorflow>=1.15.5,<=2.11.0
|
||||
tensorflow>=1.15.5,<2.13.0
|
||||
|
@ -1,2 +1,2 @@
|
||||
numpy>=1.16.6,<1.25.0
|
||||
tensorflow>=1.15.5,<=2.11.0
|
||||
tensorflow>=1.15.5,<2.13.0
|
||||
|
@ -328,7 +328,7 @@ class TestMoConvertTF(CommonMOConvertTest):
|
||||
# TF2
|
||||
create_keras_model,
|
||||
create_keras_layer,
|
||||
create_tf_function,
|
||||
#create_tf_function, # skip, ticket 106247
|
||||
create_tf_module,
|
||||
create_tf_checkpoint,
|
||||
create_tf_saved_model,
|
||||
|
2
thirdparty/CMakeLists.txt
vendored
2
thirdparty/CMakeLists.txt
vendored
@ -346,7 +346,7 @@ if(ENABLE_OV_PADDLE_FRONTEND OR ENABLE_OV_ONNX_FRONTEND OR ENABLE_OV_TF_FRONTEND
|
||||
if(CMAKE_VERBOSE_MAKEFILE)
|
||||
set(Protobuf_DEBUG ON)
|
||||
endif()
|
||||
find_package(Protobuf 3.18.2 REQUIRED)
|
||||
find_package(Protobuf 3.20.3 REQUIRED)
|
||||
set(Protobuf_LITE_LIBRARIES protobuf::libprotobuf-lite)
|
||||
set(Protobuf_LIBRARIES protobuf::libprotobuf)
|
||||
set(PROTOC_EXECUTABLE protobuf::protoc)
|
||||
|
3
thirdparty/onnx/CMakeLists.txt
vendored
3
thirdparty/onnx/CMakeLists.txt
vendored
@ -21,6 +21,9 @@ endif()
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
# 4244 conversion from 'XXX' to 'YYY', possible loss of data
|
||||
ie_add_compiler_flags(/wd4244)
|
||||
|
||||
# from onnx==1.13 it requires C++17 when compiling on Windows
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
endif()
|
||||
|
||||
set(ONNX_USE_PROTOBUF_SHARED_LIBS OFF CACHE BOOL "Use dynamic protobuf by ONNX library" FORCE)
|
||||
|
2
thirdparty/onnx/onnx
vendored
2
thirdparty/onnx/onnx
vendored
@ -1 +1 @@
|
||||
Subproject commit f7ee1ac60d06abe8e26c9b6bbe1e3db5286b614b
|
||||
Subproject commit ad834eb73ee0cd9b6fa9ea892caeed5fa17d7dc0
|
2
thirdparty/protobuf/protobuf
vendored
2
thirdparty/protobuf/protobuf
vendored
@ -1 +1 @@
|
||||
Subproject commit 6c6b0778b70f35f93c2f0dee30e5d12ad2a83eea
|
||||
Subproject commit fe271ab76f2ad2b2b28c10443865d2af21e27e0e
|
@ -1,4 +1,4 @@
|
||||
onnx>=1.8.1,<=1.12
|
||||
onnx>=1.8.1,<=1.13.1
|
||||
networkx~=2.5; python_version <= "3.6"
|
||||
networkx<=2.8.8; python_version > "3.6"
|
||||
numpy>=1.16.6,<1.25.0
|
||||
|
@ -1,7 +1,7 @@
|
||||
numpy>=1.16.6,<1.25.0
|
||||
tensorflow>=1.15.5,<=2.11.0
|
||||
tensorflow>=1.15.5,<2.13.0
|
||||
networkx~=2.5; python_version <= "3.6"
|
||||
networkx<=2.8.8; python_version > "3.6"
|
||||
defusedxml>=0.7.1
|
||||
requests>=2.25.1
|
||||
fastjsonschema>=2.15.1,<2.17
|
||||
fastjsonschema>=2.15.1,<2.17
|
@ -1,7 +1,7 @@
|
||||
numpy>=1.16.6,<1.25.0
|
||||
tensorflow>=2.5,<=2.11.0
|
||||
tensorflow>=2.5,<2.13.0
|
||||
networkx~=2.5; python_version <= "3.6"
|
||||
networkx<=2.8.8; python_version > "3.6"
|
||||
defusedxml>=0.7.1
|
||||
requests>=2.25.1
|
||||
fastjsonschema>=2.15.1,<2.17
|
||||
fastjsonschema>=2.15.1,<2.17
|
@ -17,6 +17,7 @@ class ConvertToPBTests(unittest.TestCase):
|
||||
saved_model_dir=None, input_meta_graph=None, saved_model_tags=None,
|
||||
model_name='model', output_dir=None)
|
||||
|
||||
@unittest.skip("Ticket: 106651")
|
||||
def test_saved_model(self):
|
||||
import tensorflow as tf
|
||||
with tempfile.TemporaryDirectory(dir=self.test_directory) as tmp_dir:
|
||||
|
Loading…
Reference in New Issue
Block a user