Refactor ngraph builders 3 (#21077)
* Remove and deprecate makeSqueezeUnsqueeze * Remove and deprecate makeMinMax makeProposal * Remove makeCumSum makeSelect builders * Remove makeSpaceToDepth builder * Remove makeShuffleChannels builder * Remove makeMatMul builder
This commit is contained in:
parent
c360de0f07
commit
534ec2e9ab
@ -42,7 +42,7 @@ TEST_F(TypeRelaxedThreading, TypeRelaxedCloning) {
|
||||
auto inp2 = std::make_shared<op::v0::Parameter>(element::i8, PartialShape{-1, -1, -1, -1});
|
||||
|
||||
auto matMulRelaxed = std::make_shared<ov::op::TypeRelaxed<ov::op::v0::MatMul>>(
|
||||
*as_type_ptr<op::v0::MatMul>(ngraph::builder::makeMatMul(inp1_f32, inp2_f32, false, false)),
|
||||
*std::make_shared<ov::op::v0::MatMul>(inp1_f32, inp2_f32, false, false),
|
||||
element::f32);
|
||||
auto matMul = matMulRelaxed->clone_with_new_inputs({inp1, inp2});
|
||||
|
||||
|
@ -25,7 +25,7 @@ std::shared_ptr<ov::Model> MakeMatMulModel() {
|
||||
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(precision, ov::Shape(input_shape))};
|
||||
auto matmul_const = ngraph::builder::makeConstant(precision, {4096, 1024}, std::vector<float>{}, true);
|
||||
auto matmul = ngraph::builder::makeMatMul(params[0], matmul_const);
|
||||
auto matmul = std::make_shared<ov::op::v0::MatMul>(params[0], matmul_const);
|
||||
|
||||
auto add_const = ngraph::builder::makeConstant(precision, {1, 1024}, std::vector<float>{}, true);
|
||||
auto add = ngraph::builder::makeEltwise(matmul, add_const, ngraph::helpers::EltwiseTypes::ADD);
|
||||
|
@ -133,7 +133,7 @@ void MatMulLayerCPUTest::SetUp() {
|
||||
params.push_back(std::dynamic_pointer_cast<opset1::Parameter>(matrixB));
|
||||
}
|
||||
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<opset1::Parameter>(params));
|
||||
auto matMul = builder::makeMatMul(paramOuts[0], matrixB, transpA, transpB);
|
||||
auto matMul = std::make_shared<ov::op::v0::MatMul>(paramOuts[0], matrixB, transpA, transpB);
|
||||
function = makeNgraphFunction(netType, params, matMul, cpuNodeType);
|
||||
checkFusingPosition = false;
|
||||
}
|
||||
|
@ -62,7 +62,7 @@ protected:
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto axisNode = ngraph::opset1::Constant::create(ngraph::element::i32, ngraph::Shape{}, std::vector<int64_t>{axis})->output(0);
|
||||
auto cumSum = ngraph::builder::makeCumSum(params[0], axisNode, exclusive, reverse);
|
||||
auto cumSum = std::make_shared<ov::op::v0::CumSum>(params[0], axisNode, exclusive, reverse);
|
||||
|
||||
function = std::make_shared<ngraph::Function>(ngraph::NodeVector{ cumSum }, params, "CumSumLayerCPUTest");
|
||||
functionRefs = ngraph::clone_function(*function);
|
||||
|
@ -133,7 +133,7 @@ protected:
|
||||
auto matrixBFP32 = builder::makeDynamicInputLayer(element::f32, helpers::InputLayerType::CONSTANT, inShapeB);
|
||||
|
||||
auto matMulRelaxed = std::make_shared<ov::op::TypeRelaxed<opset3::MatMul>>(
|
||||
*as_type_ptr<opset3::MatMul>(builder::makeMatMul(inputParamsFP32, matrixBFP32, transpose_a, transpose_b)),
|
||||
*std::make_shared<ov::op::v0::MatMul>(inputParamsFP32, matrixBFP32, transpose_a, transpose_b),
|
||||
element::f32);
|
||||
|
||||
auto matrixB = ngraph::builder::makeConstant<int8_t>(weiType, inShapeB.get_shape(), weiData);
|
||||
|
@ -69,8 +69,7 @@ protected:
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto shuffleChannels = std::dynamic_pointer_cast<ngraph::opset3::ShuffleChannels>(
|
||||
ngraph::builder::makeShuffleChannels(params[0], axis, group));
|
||||
auto shuffleChannels = std::make_shared<ov::op::v0::ShuffleChannels>(params[0], axis, group);
|
||||
function = makeNgraphFunction(inType, params, shuffleChannels, "ShuffleChannels");
|
||||
}
|
||||
};
|
||||
|
@ -77,7 +77,7 @@ protected:
|
||||
for (auto&& shape : inputDynamicShapes) {
|
||||
params.push_back(std::make_shared<ov::op::v0::Parameter>(inType, shape));
|
||||
}
|
||||
auto d2s = ngraph::builder::makeSpaceToDepth(params[0], mode, blockSize);
|
||||
auto d2s = std::make_shared<ov::op::v0::SpaceToDepth> (params[0], mode, blockSize);
|
||||
function = makeNgraphFunction(inType, params, d2s, "SpaceToDepthCPU");
|
||||
}
|
||||
};
|
||||
|
@ -56,7 +56,7 @@ protected:
|
||||
const auto ngPrec = element::f32;
|
||||
ov::ParameterVector inputParams{std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(inShapes.first)),
|
||||
std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(inShapes.second))};
|
||||
const auto matMul = builder::makeMatMul(inputParams[0], inputParams[1], false, false);
|
||||
const auto matMul = std::make_shared<ov::op::v0::MatMul>(inputParams[0], inputParams[1], false, false);
|
||||
|
||||
selectedType = makeSelectedTypeStr(with_cpu_x86_avx512_core() ? "brgemm_avx512" : "jit_gemm", ngPrec);
|
||||
|
||||
|
@ -48,7 +48,7 @@ protected:
|
||||
auto mmConst = ngraph::opset5::Constant::create(ngraph::element::f32, mmShape2, mmInData);
|
||||
ov::ParameterVector mmParams {std::make_shared<ov::op::v0::Parameter>(ngPrec, mmShape)};
|
||||
|
||||
const auto mm = builder::makeMatMul(mmParams[0], mmConst, false, false);
|
||||
const auto mm = std::make_shared<ov::op::v0::MatMul>(mmParams[0], mmConst, false, false);
|
||||
auto sum = ngraph::builder::makeEltwise(constShift, mm, ngraph::helpers::EltwiseTypes::ADD);
|
||||
auto fq = ngraph::builder::makeFakeQuantize(sum, ngraph::element::f32, 256, {}, {-8.0f}, {7.0f}, {-8.0f}, {7.0f});
|
||||
|
||||
|
@ -55,10 +55,10 @@ protected:
|
||||
if (rank == 3) bcastTo3D(fcWeightsShape);
|
||||
|
||||
auto fc1secondInput = builder::makeInputLayer(ngPrec, helpers::InputLayerType::CONSTANT, fcWeightsShape);
|
||||
const auto fc1 = builder::makeMatMul(split->output(0), fc1secondInput, false, false);
|
||||
const auto fc1 = std::make_shared<ov::op::v0::MatMul>(split->output(0), fc1secondInput, false, false);
|
||||
|
||||
auto fc2secondInputB = builder::makeInputLayer(ngPrec, helpers::InputLayerType::CONSTANT, fcWeightsShape);
|
||||
const auto fc2 = builder::makeMatMul(split->output(1), fc2secondInputB, false, false);
|
||||
const auto fc2 = std::make_shared<ov::op::v0::MatMul>(split->output(1), fc2secondInputB, false, false);
|
||||
|
||||
const auto fcConcatAxis = rank == 3 ? 1 : 0;
|
||||
const auto concatMatMuls = builder::makeConcat({fc1, fc2}, fcConcatAxis);
|
||||
|
@ -216,7 +216,7 @@ protected:
|
||||
}
|
||||
expectedWeiConstElemType = weiConstElemType;
|
||||
|
||||
auto matMul = builder::makeMatMul(params[0], inputB, transpA, transpB);
|
||||
auto matMul = std::make_shared<ov::op::v0::MatMul>(params[0], inputB, transpA, transpB);
|
||||
|
||||
function = CPUTestsBase::makeNgraphFunction(netType, params, matMul, cpuNodeType);
|
||||
}
|
||||
@ -501,8 +501,8 @@ protected:
|
||||
// In this test, convert must be folded on the ngraph side, so the constant with fp32 precision is expected
|
||||
expectedWeiConstElemType = ElementType::f32;
|
||||
|
||||
auto matMul0 = builder::makeMatMul(params[0], inputWeights, transpA, transpB);
|
||||
auto matMul1 = builder::makeMatMul(params[1], inputWeights, transpA, transpB);
|
||||
auto matMul0 = std::make_shared<ov::op::v0::MatMul>(params[0], inputWeights, transpA, transpB);
|
||||
auto matMul1 = std::make_shared<ov::op::v0::MatMul>(params[1], inputWeights, transpA, transpB);
|
||||
|
||||
auto concat = builder::makeConcat({matMul0, matMul1}, 0);
|
||||
|
||||
|
@ -85,7 +85,7 @@ protected:
|
||||
matMul = std::make_shared<ngraph::opset1::Add>(fc, biasWeightsNode);
|
||||
} else {
|
||||
auto fq2 = ngraph::builder::makeFakeQuantize(inputParams[0], ngPrec, 256, {}, {-1.28f}, {1.27f}, {-1.28f}, {1.27f});
|
||||
matMul = builder::makeMatMul(fq1, fq2, false, true);
|
||||
matMul = std::make_shared<ov::op::v0::MatMul>(fq1, fq2, false, true);
|
||||
matMul->get_rt_info() = getCPUInfo();
|
||||
matMul->set_friendly_name(nameMatmul);
|
||||
}
|
||||
@ -101,7 +101,7 @@ protected:
|
||||
auto filterWeightsNode = ngraph::builder::makeConstant(element::f32, filterWeightsShape, std::vector<float>{}, true);
|
||||
auto fq3 = ngraph::builder::makeFakeQuantize(filterWeightsNode, ngPrec, 256, {}, {-1.28f}, {1.27f}, {-1.28f}, {1.27f});
|
||||
// only matmul avx2 support s8*s8 input
|
||||
auto matMul2 = builder::makeMatMul(nodeBeforeConv, fq3, false, false);
|
||||
auto matMul2 = std::make_shared<ov::op::v0::MatMul>(nodeBeforeConv, fq3, false, false);
|
||||
|
||||
function = makeNgraphFunction(ngPrec, inputParams, matMul2, "MatmulBrgemmInt8");
|
||||
}
|
||||
|
@ -44,12 +44,12 @@ protected:
|
||||
const auto concatOutputNodes = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(concatInputParams));
|
||||
const auto concat = builder::makeConcat(concatOutputNodes, 2);
|
||||
|
||||
const auto matMul1 = builder::makeMatMul(split->output(0), concat, false, false);
|
||||
const auto matMul1 = std::make_shared<ov::op::v0::MatMul>(split->output(0), concat, false, false);
|
||||
|
||||
SizeVector matmulShape{1, 1, 16, 8};
|
||||
ov::ParameterVector matmulInputParams {std::make_shared<ov::op::v0::Parameter>(ngPrec, ov::Shape(matmulShape))};
|
||||
|
||||
const auto matMul2 = builder::makeMatMul(split->output(1), matmulInputParams[0], false, false);
|
||||
const auto matMul2 = std::make_shared<ov::op::v0::MatMul>(split->output(1), matmulInputParams[0], false, false);
|
||||
|
||||
const auto concatMatMuls = builder::makeConcat({matMul1, matMul2}, 2 /* 3rd axis */);
|
||||
|
||||
|
@ -221,7 +221,7 @@ protected:
|
||||
transpose_weights,
|
||||
add_subtract,
|
||||
reshape_on_decompression);
|
||||
auto matMul = builder::makeMatMul(params[0], weights_subgraph);
|
||||
auto matMul = std::make_shared<ov::op::v0::MatMul>(params[0], weights_subgraph);
|
||||
return makeNgraphFunction(data_precision, params, matMul, "MatmulWeightsDecompression");
|
||||
}
|
||||
|
||||
|
@ -86,7 +86,7 @@ protected:
|
||||
auto reshape = std::make_shared<ngraph::opset1::Reshape>(params[0], reshapeData, true);
|
||||
|
||||
auto weight = ngraph::builder::makeDynamicInputLayer(prc, ngraph::helpers::InputLayerType::CONSTANT, inputDynamicShapes.back());
|
||||
auto matMul = ngraph::builder::makeMatMul(reshape, weight, false, false);
|
||||
auto matMul = std::make_shared<ov::op::v0::MatMul>(reshape, weight, false, false);
|
||||
|
||||
function = makeNgraphFunction(prc, params, matMul, "ReshapeFcModel");
|
||||
}
|
||||
|
@ -111,7 +111,7 @@ protected:
|
||||
|
||||
auto split = builder::makeVariadicSplit(params[0], {1, 1}, 0);
|
||||
|
||||
auto matMul = builder::makeMatMul(split->output(0), inputB, transpA, transpB);
|
||||
auto matMul = std::make_shared<ov::op::v0::MatMul>(split->output(0), inputB, transpA, transpB);
|
||||
|
||||
auto concat = builder::makeConcat({matMul, split->output(1)}, 0);
|
||||
|
||||
|
@ -80,7 +80,7 @@ protected:
|
||||
size_t elemNum = inputShape[inputShape.size() - 1];
|
||||
std::vector<float> weights = ov::test::utils::generate_float_numbers(elemNum * elemNum, -0.1f, 0.1f);
|
||||
auto weightsNode = std::make_shared<ngraph::opset7::Constant>(ngPrc, ngraph::Shape{elemNum, elemNum}, weights);
|
||||
auto matmul = ngraph::builder::makeMatMul(params[0], weightsNode, false, true);
|
||||
auto matmul = std::make_shared<ov::op::v0::MatMul>(params[0], weightsNode, false, true);
|
||||
|
||||
auto bias = ngraph::builder::makeConstant(ngPrc, std::vector<size_t>{1, batch, 1}, std::vector<float>{1.0f});
|
||||
auto add = ngraph::builder::makeEltwise(matmul, bias, ngraph::helpers::EltwiseTypes::ADD);
|
||||
@ -168,7 +168,7 @@ protected:
|
||||
weightsLowNode,
|
||||
weightsHighNode,
|
||||
UINT16_MAX);
|
||||
auto matmul = ngraph::builder::makeMatMul(inputFQ, weightsFQNode, false, true);
|
||||
auto matmul = std::make_shared<ov::op::v0::MatMul>(inputFQ, weightsFQNode, false, true);
|
||||
|
||||
auto bias = ngraph::builder::makeConstant(ngPrc, std::vector<size_t>{1, 1, 1}, std::vector<float>{1.0f});
|
||||
auto add = ngraph::builder::makeEltwise(matmul, bias, ngraph::helpers::EltwiseTypes::ADD);
|
||||
|
@ -136,7 +136,7 @@ protected:
|
||||
auto mm_const = makeConstant<float>(precision, {height, width}, {}, true);
|
||||
auto mm_const_fq = CreateFQNode(precision, mm_const, fq_min_max[1][0], fq_min_max[1][1], fq_levels);
|
||||
|
||||
auto matmul = makeMatMul(mm_const_fq, reshape);
|
||||
auto matmul = std::make_shared<ov::op::v0::MatMul>(mm_const_fq, reshape);
|
||||
auto matmul_fq = CreateFQNode(precision, matmul, fq_min_max[2][0], fq_min_max[2][1], fq_levels);
|
||||
auto add_mm_reshape = CreateReshapeNode(ngraph::element::Type_t::i32, matmul, {height});
|
||||
|
||||
|
@ -86,8 +86,8 @@ protected:
|
||||
std::make_shared<ngraph::opset1::Constant>(ngPrc, ngraph::Shape{matmul_in_shape[1], 1}, weights);
|
||||
}
|
||||
|
||||
auto matmul = firstInConst ? ngraph::builder::makeMatMul(weights_node, reshape, false, false)
|
||||
: ngraph::builder::makeMatMul(reshape, weights_node, false, false);
|
||||
auto matmul = firstInConst ? std::make_shared<ov::op::v0::MatMul>(weights_node, reshape, false, false)
|
||||
: std::make_shared<ov::op::v0::MatMul>(reshape, weights_node, false, false);
|
||||
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(matmul)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "InsertTransposeBeforeMatmul");
|
||||
@ -178,8 +178,8 @@ protected:
|
||||
weights_node =
|
||||
std::make_shared<ngraph::opset1::Constant>(ngPrc, ngraph::Shape{1, matmul_in_shape[0] * 2}, weights);
|
||||
|
||||
auto matmul = firstInConst ? ngraph::builder::makeMatMul(weights_node, concat, false, false)
|
||||
: ngraph::builder::makeMatMul(concat, weights_node, false, false);
|
||||
auto matmul = firstInConst ? std::make_shared<ov::op::v0::MatMul>(weights_node, concat, false, false)
|
||||
: std::make_shared<ov::op::v0::MatMul>(concat, weights_node, false, false);
|
||||
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(matmul)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "InsertTransposeBeforeConcatConcat");
|
||||
|
@ -106,10 +106,8 @@ protected:
|
||||
matmul_input2 = std::make_shared<ngraph::opset8::Reshape>(fqIn2, pattern, false);
|
||||
}
|
||||
|
||||
auto matmul = swapInputs ? std::dynamic_pointer_cast<ngraph::opset8::MatMul>(
|
||||
ngraph::builder::makeMatMul(matmul_input2, fqIn1, false, true))
|
||||
: std::dynamic_pointer_cast<ngraph::opset8::MatMul>(
|
||||
ngraph::builder::makeMatMul(fqIn1, matmul_input2, false, true));
|
||||
auto matmul = swapInputs ? std::make_shared<ov::op::v0::MatMul>(matmul_input2, fqIn1, false, true)
|
||||
: std::make_shared<ov::op::v0::MatMul>(fqIn1, matmul_input2, false, true);
|
||||
|
||||
auto lowNodeOut =
|
||||
ngraph::builder::makeConstant<float>(ngPrc, {1}, {-maxInputValue * maxInputValue * inputShape[1] / 10});
|
||||
|
@ -122,7 +122,7 @@ protected:
|
||||
if (secondaryInputType == helpers::InputLayerType::PARAMETER) {
|
||||
params.push_back(std::dynamic_pointer_cast<opset1::Parameter>(matrixB));
|
||||
}
|
||||
auto matMul = builder::makeMatMul(params[0], matrixB, transpA, transpB);
|
||||
auto matMul = std::make_shared<ov::op::v0::MatMul>(params[0], matrixB, transpA, transpB);
|
||||
auto makeFunction = [](const ngraph::element::Type &ngPrc, ngraph::ParameterVector ¶ms, const std::shared_ptr<ngraph::Node> &lastNode) {
|
||||
ngraph::ResultVector results;
|
||||
|
||||
|
@ -106,7 +106,7 @@ void SetBlobTest::SetUp() {
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(precNg);
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(IS))};
|
||||
auto axisNode = std::make_shared<ngraph::op::Constant>(ngraph::element::Type_t::i64, ngraph::Shape{}, std::vector<int64_t>{-1})->output(0);
|
||||
auto cumSum = std::dynamic_pointer_cast<ngraph::opset4::CumSum>(ngraph::builder::makeCumSum(params[0], axisNode, false, false));
|
||||
auto cumSum = std::make_shared<ov::op::v0::CumSum>(params[0], axisNode, false, false);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset4::Result>(cumSum)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "InferSetBlob");
|
||||
}
|
||||
|
@ -74,22 +74,26 @@ void ProposalBehTest::SetUp() {
|
||||
params[0]->set_friendly_name("scores");
|
||||
params[1]->set_friendly_name("boxes");
|
||||
|
||||
auto proposal = std::dynamic_pointer_cast<ngraph::opset1::Proposal>(
|
||||
ngraph::builder::makeProposal(params[0], params[1], img_info, ngPrc,
|
||||
base_size,
|
||||
pre_nms_topn,
|
||||
post_nms_topn,
|
||||
nms_thresh,
|
||||
feat_stride,
|
||||
min_size,
|
||||
ratio,
|
||||
scale,
|
||||
clip_before_nms,
|
||||
clip_after_nms,
|
||||
normalize,
|
||||
box_size_scale,
|
||||
box_coordinate_scale,
|
||||
framework));
|
||||
ov::op::v0::Proposal::Attributes attrs;
|
||||
attrs.base_size = base_size;
|
||||
attrs.pre_nms_topn = pre_nms_topn;
|
||||
attrs.post_nms_topn = post_nms_topn;
|
||||
attrs.nms_thresh = nms_thresh;
|
||||
attrs.feat_stride = feat_stride;
|
||||
attrs.min_size = min_size;
|
||||
attrs.ratio = ratio;
|
||||
attrs.scale = scale;
|
||||
attrs.clip_before_nms = clip_before_nms;
|
||||
attrs.clip_after_nms = clip_after_nms;
|
||||
attrs.normalize = normalize;
|
||||
attrs.box_size_scale = box_size_scale;
|
||||
attrs.box_coordinate_scale = box_coordinate_scale;
|
||||
attrs.framework = framework;
|
||||
attrs.infer_probs = true;
|
||||
|
||||
auto image_shape = std::make_shared<ov::op::v0::Constant>(ov::element::f32, ov::Shape{3}, img_info);
|
||||
|
||||
auto proposal = std::make_shared<ov::op::v4::Proposal>(params[0], params[1], image_shape, attrs);
|
||||
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(proposal)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "proposal");
|
||||
|
@ -67,8 +67,7 @@ void MatMulTest::SetUp() {
|
||||
if (secondaryInputType == ngraph::helpers::InputLayerType::PARAMETER) {
|
||||
params.push_back(std::dynamic_pointer_cast<ngraph::opset3::Parameter>(secondaryInput));
|
||||
}
|
||||
auto MatMul = std::dynamic_pointer_cast<ngraph::opset3::MatMul>(
|
||||
ngraph::builder::makeMatMul(params[0], secondaryInput, shapeRelatedParams.input1.second, shapeRelatedParams.input2.second));
|
||||
auto MatMul = std::make_shared<ov::op::v0::MatMul>(params[0], secondaryInput, shapeRelatedParams.input1.second, shapeRelatedParams.input2.second);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(MatMul)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "MatMul");
|
||||
}
|
||||
|
@ -44,7 +44,9 @@ namespace LayerTestsDefinitions {
|
||||
input.push_back(std::dynamic_pointer_cast<ngraph::opset3::Parameter>(secondaryInput));
|
||||
}
|
||||
|
||||
OPENVINO_SUPPRESS_DEPRECATED_START
|
||||
auto op = ngraph::builder::makeMinMax(input[0], secondaryInput, opType);
|
||||
OPENVINO_SUPPRESS_DEPRECATED_END
|
||||
function = std::make_shared<ngraph::Function>(op, input, "MinMax");
|
||||
}
|
||||
} // namespace LayerTestsDefinitions
|
||||
|
@ -152,6 +152,7 @@ void ProposalLayerTest::SetUp() {
|
||||
params[0]->set_friendly_name("a_scores");
|
||||
params[1]->set_friendly_name("b_boxes");
|
||||
|
||||
OPENVINO_SUPPRESS_DEPRECATED_START
|
||||
auto proposal = std::dynamic_pointer_cast<ngraph::opset4::Proposal>(
|
||||
ngraph::builder::makeProposal(params[0], params[1], img_info, ngPrc,
|
||||
base_size,
|
||||
@ -168,6 +169,7 @@ void ProposalLayerTest::SetUp() {
|
||||
box_size_scale,
|
||||
box_coordinate_scale,
|
||||
framework));
|
||||
OPENVINO_SUPPRESS_DEPRECATED_END
|
||||
|
||||
ngraph::ResultVector results{
|
||||
std::make_shared<ngraph::opset1::Result>(proposal->output(0)),
|
||||
|
@ -40,8 +40,7 @@ void ShuffleChannelsLayerTest::SetUp() {
|
||||
std::tie(axis, group) = shuffleChannelsParams;
|
||||
auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
|
||||
ov::ParameterVector params{std::make_shared<ov::op::v0::Parameter>(ngPrc, ov::Shape(inputShape))};
|
||||
auto shuffleChannels = std::dynamic_pointer_cast<ngraph::opset3::ShuffleChannels>(
|
||||
ngraph::builder::makeShuffleChannels(params[0], axis, group));
|
||||
auto shuffleChannels = std::make_shared<ov::op::v0::ShuffleChannels>(params[0], axis, group);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset3::Result>(shuffleChannels)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "shuffleChannels");
|
||||
}
|
||||
|
@ -46,7 +46,9 @@ void SpaceToDepthLayerTest::SetUp() {
|
||||
std::tie(inShape, inputPrecision, mode, blockSize, targetDevice) = this->GetParam();
|
||||
auto inPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(inputPrecision);
|
||||
ov::ParameterVector params {std::make_shared<ov::op::v0::Parameter>(inPrc, ov::Shape(inShape))};
|
||||
auto s2d = ngraph::builder::makeSpaceToDepth(params[0], mode, blockSize);
|
||||
OPENVINO_SUPPRESS_DEPRECATED_START
|
||||
auto s2d = std::make_shared<ov::op::v0::SpaceToDepth>(params[0], mode, blockSize);
|
||||
OPENVINO_SUPPRESS_DEPRECATED_END
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(s2d)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "SpaceToDepth");
|
||||
}
|
||||
|
@ -44,7 +44,9 @@ void SqueezeUnsqueezeLayerTest::SetUp() {
|
||||
if (axesVector.empty() && opType == ngraph::helpers::SqueezeOpType::SQUEEZE) {
|
||||
op = std::make_shared<ngraph::opset1::Squeeze>(params.front());
|
||||
} else {
|
||||
OPENVINO_SUPPRESS_DEPRECATED_START
|
||||
op = ngraph::builder::makeSqueezeUnsqueeze(params.front(), ngraph::element::i64, axesVector, opType);
|
||||
OPENVINO_SUPPRESS_DEPRECATED_END
|
||||
}
|
||||
|
||||
const ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(op)};
|
||||
|
@ -42,8 +42,12 @@ void CascadeConcat::SetUp() {
|
||||
auto concat = std::make_shared<ngraph::opset1::Concat>(ngraph::OutputVector{relu1->output(0),
|
||||
relu2->output(0)},
|
||||
1);
|
||||
auto reshape = ngraph::builder::makeSqueezeUnsqueeze(concat, ngraph::element::i64, {0}, ngraph::helpers::SqueezeOpType::UNSQUEEZE);
|
||||
auto reshape2 = ngraph::builder::makeSqueezeUnsqueeze(reshape, ngraph::element::i64, {0}, ngraph::helpers::SqueezeOpType::SQUEEZE);
|
||||
|
||||
auto reshape_constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{0});
|
||||
auto reshape = std::make_shared<ov::op::v0::Squeeze>(concat, reshape_constant);
|
||||
auto reshape2_constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{0});
|
||||
auto reshape2 = std::make_shared<ov::op::v0::Unsqueeze>(reshape, reshape2_constant);
|
||||
|
||||
auto concat2 = std::make_shared<ngraph::opset1::Concat>(ngraph::OutputVector{reshape2->output(0),
|
||||
relu3->output(0)},
|
||||
1);
|
||||
@ -108,10 +112,13 @@ void CascadeConcatWithMultiConnReshape::SetUp() {
|
||||
auto const1 = ngraph::builder::makeConstant(ngPrc, inputShapeSqueezed, std::vector<float>{}, true);
|
||||
auto concat1 = ngraph::builder::makeConcat({relu, const1}, inputShapeSqueezed.size() - 1);
|
||||
|
||||
auto squeeze = ngraph::builder::makeSqueezeUnsqueeze(concat1, ngraph::element::i64, {0}, ngraph::helpers::SqueezeOpType::SQUEEZE);
|
||||
auto squeeze_constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{0});
|
||||
auto squeeze = std::make_shared<ov::op::v0::Squeeze>(concat1, squeeze_constant);
|
||||
|
||||
auto relu1 = std::make_shared<ngraph::opset8::Relu>(squeeze);
|
||||
auto unsqueeze1 = ngraph::builder::makeSqueezeUnsqueeze(relu1, ngraph::element::i64, {0}, ngraph::helpers::SqueezeOpType::UNSQUEEZE);
|
||||
|
||||
auto unsqueeze1_constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{0});
|
||||
auto unsqueeze1 = std::make_shared<ov::op::v0::Unsqueeze>(relu1, unsqueeze1_constant);
|
||||
|
||||
auto const2 = ngraph::builder::makeConstant(ngPrc, inputShape, std::vector<float>{}, true);
|
||||
auto concat2 = ngraph::builder::makeConcat({squeeze, const2}, 1);
|
||||
@ -119,7 +126,10 @@ void CascadeConcatWithMultiConnReshape::SetUp() {
|
||||
concat2->set_friendly_name("XConcat");
|
||||
|
||||
auto relu2 = std::make_shared<ngraph::opset8::Relu>(concat2);
|
||||
auto unsqueeze2 = ngraph::builder::makeSqueezeUnsqueeze(relu2, ngraph::element::i64, {0}, ngraph::helpers::SqueezeOpType::UNSQUEEZE);
|
||||
|
||||
auto unsqueeze2_constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{0});
|
||||
auto unsqueeze2 = std::make_shared<ov::op::v0::Unsqueeze>(relu2, unsqueeze2_constant);
|
||||
|
||||
ngraph::ResultVector results = {std::make_shared<ngraph::opset1::Result>(unsqueeze1),
|
||||
std::make_shared<ngraph::opset1::Result>(unsqueeze2)};
|
||||
|
||||
|
@ -40,7 +40,7 @@ void FqWithMixedLevelsTest::SetUp() {
|
||||
std::vector<float> weights = ov::test::utils::generate_float_numbers(shapes[1][0] * shapes[1][1], weights_min, weights_max);
|
||||
auto constant = std::make_shared<ngraph::opset7::Constant>(ngPrc, ngraph::Shape{shapes[1][0], shapes[1][1]}, weights);
|
||||
auto fake2 = ngraph::builder::makeFakeQuantize(constant, ngPrc, level2, { 1 }, data2[0], data2[1], data2[2], data2[3]);
|
||||
auto matmul = ngraph::builder::makeMatMul(fake1, fake2, false, true);
|
||||
auto matmul = std::make_shared<ov::op::v0::MatMul>(fake1, fake2, false, true);
|
||||
auto bias = ngraph::builder::makeConstant(ngPrc, std::vector<size_t>{shapes[0][0], shapes[1][0]}, std::vector<float>{ 1.0 });
|
||||
auto add = ngraph::builder::makeEltwise(matmul, bias, ngraph::helpers::EltwiseTypes::ADD);
|
||||
return ngraph::builder::makeFakeQuantize(add, ngPrc, level3, { 1 }, data3[0], data3[1], data3[2], data3[3]);
|
||||
|
@ -37,8 +37,12 @@ namespace SubgraphTestsDefinitions {
|
||||
ngraph::Shape{input[0]->get_shape()},
|
||||
std::vector<float>{-1.0f});
|
||||
auto eltwise = std::make_shared<ngraph::opset1::Multiply>(input[0], eltwise_const);
|
||||
auto squeeze = ngraph::builder::makeSqueezeUnsqueeze(eltwise, ngraph::element::i64, {0}, ngraph::helpers::SqueezeOpType::UNSQUEEZE);
|
||||
auto unsqueeze = ngraph::builder::makeSqueezeUnsqueeze(squeeze, ngraph::element::i64, {0}, ngraph::helpers::SqueezeOpType::SQUEEZE);
|
||||
|
||||
auto squeeze_constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{0});
|
||||
auto squeeze = std::make_shared<ov::op::v0::Unsqueeze>(eltwise, squeeze_constant);
|
||||
auto unsqueeze_constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{1}, std::vector<int64_t>{0});
|
||||
auto unsqueeze = std::make_shared<ov::op::v0::Squeeze>(squeeze, unsqueeze_constant);
|
||||
|
||||
auto eltwise_const2 = ngraph::builder::makeConstant(ngPrc, ngraph::Shape{1}, std::vector<float>{1.01f});
|
||||
auto eltwise_const3 = ngraph::builder::makeConstant(ngPrc, ngraph::Shape{1}, std::vector<float>{1.01f});
|
||||
auto eltwise2 = std::make_shared<ngraph::opset1::Multiply>(eltwise, eltwise_const2);
|
||||
|
@ -92,8 +92,7 @@ void QuantMatMulTest::SetUp() {
|
||||
auto dataFq0 = makeFakeQuantizeNode(quantLevels0, inputRange0, outputRange0, quantGranularity0, params[0], inputShape0, fqPrec0);
|
||||
auto dataFq1 = makeFakeQuantizeNode(quantLevels1, inputRange1, outputRange1, quantGranularity1, params[1], inputShape1, fqPrec1);
|
||||
|
||||
auto MatMul = std::dynamic_pointer_cast<ngraph::opset3::MatMul>(
|
||||
ngraph::builder::makeMatMul(dataFq0, dataFq1));
|
||||
auto MatMul = std::make_shared<ov::op::v0::MatMul>(dataFq0, dataFq1);
|
||||
ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(MatMul)};
|
||||
function = std::make_shared<ngraph::Function>(results, params, "QuantMatMul");
|
||||
}
|
||||
|
@ -37,7 +37,20 @@ void ReshapeSqueezeReshapeRelu::SetUp() {
|
||||
ov::Shape{squeezeShape.first.size()},
|
||||
squeezeShape.first);
|
||||
auto reshape1 = std::make_shared<ov::op::v1::Reshape>(input[0], reshape1_pattern, false);
|
||||
auto squeeze = ngraph::builder::makeSqueezeUnsqueeze(reshape1, ov::element::i64, squeezeShape.second, opType);
|
||||
|
||||
auto constant = std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{squeezeShape.second.size()}, squeezeShape.second);
|
||||
std::shared_ptr<ov::Node> squeeze;
|
||||
switch (opType) {
|
||||
case ov::test::utils::SqueezeOpType::SQUEEZE:
|
||||
squeeze = std::make_shared<ov::op::v0::Squeeze>(reshape1, constant);
|
||||
break;
|
||||
case ov::test::utils::SqueezeOpType::UNSQUEEZE:
|
||||
squeeze = std::make_shared<ov::op::v0::Unsqueeze>(reshape1, constant);
|
||||
break;
|
||||
default:
|
||||
throw std::logic_error("Unsupported operation type");
|
||||
}
|
||||
|
||||
auto reshape2_pattern =
|
||||
std::make_shared<ov::op::v0::Constant>(ov::element::i64, ov::Shape{2}, std::vector<size_t>{1, input_dim});
|
||||
auto reshape2 = std::make_shared<ov::op::v1::Reshape>(squeeze, reshape2_pattern, false);
|
||||
|
@ -345,21 +345,25 @@ std::shared_ptr<ov::Node> makeMVN(const ov::Output<Node>& in,
|
||||
bool normalizeVariance,
|
||||
double eps);
|
||||
|
||||
OPENVINO_DEPRECATED("This function is deprecated and will be removed soon.")
|
||||
std::shared_ptr<ov::Node> makeMVN6(const Output<Node>& in,
|
||||
const Output<Node>& axesNode,
|
||||
bool normalizeVariance,
|
||||
float eps,
|
||||
std::string& epsMode);
|
||||
|
||||
OPENVINO_DEPRECATED("This function is deprecated and will be removed soon.")
|
||||
std::shared_ptr<ov::Node> makeSqueezeUnsqueeze(const ov::Output<Node>& in,
|
||||
const element::Type& type,
|
||||
const std::vector<int>& squeeze_indices,
|
||||
ov::test::utils::SqueezeOpType opType);
|
||||
|
||||
OPENVINO_DEPRECATED("This function is deprecated and will be removed soon.")
|
||||
std::shared_ptr<ov::Node> makeMinMax(const ov::Output<Node>& in1,
|
||||
const ov::Output<Node>& in2,
|
||||
ov::test::utils::MinMaxOpType opType);
|
||||
|
||||
OPENVINO_DEPRECATED("This function is deprecated and will be removed soon.")
|
||||
std::shared_ptr<ov::Node> makeProposal(const ov::Output<Node>& class_probs,
|
||||
const ov::Output<Node>& class_logits,
|
||||
const std::vector<float>& image_info,
|
||||
@ -379,9 +383,6 @@ std::shared_ptr<ov::Node> makeProposal(const ov::Output<Node>& class_probs,
|
||||
float box_coordinate_scale,
|
||||
std::string framework);
|
||||
|
||||
std::shared_ptr<ov::Node> makeSelect(std::vector<ov::Output<Node>>& in,
|
||||
const ov::op::AutoBroadcastSpec& auto_broadcast);
|
||||
|
||||
std::shared_ptr<Node> makeFakeQuantize(const ov::Output<Node>& in,
|
||||
const element::Type& type,
|
||||
std::size_t levels,
|
||||
@ -397,11 +398,6 @@ std::shared_ptr<Node> makeFakeQuantize(const ov::Output<Node>& in,
|
||||
std::vector<size_t> constShapes,
|
||||
const int32_t seed = 1);
|
||||
|
||||
std::shared_ptr<ov::Node> makeCumSum(const ov::Output<Node>& in,
|
||||
const ov::Output<Node>& axis,
|
||||
bool exclusive,
|
||||
bool reverse);
|
||||
|
||||
std::shared_ptr<ov::Node> makeEmbeddingBagOffsetsSum(const element::Type& dataType,
|
||||
const element::Type& indicesType,
|
||||
const ov::Output<Node>& emb_table_node,
|
||||
@ -427,17 +423,6 @@ std::shared_ptr<ov::Node> makeEmbeddingSegmentsSum(const element::Type& dataType
|
||||
bool with_weights,
|
||||
bool with_default_index);
|
||||
|
||||
std::shared_ptr<ov::Node> makeSpaceToDepth(const ov::Output<Node>& in,
|
||||
ov::op::v0::SpaceToDepth::SpaceToDepthMode mode,
|
||||
size_t blockSize);
|
||||
|
||||
std::shared_ptr<Node> makeShuffleChannels(const ov::Output<Node>& in, int axis, int group);
|
||||
|
||||
std::shared_ptr<Node> makeMatMul(const Output<Node>& A,
|
||||
const Output<Node>& B,
|
||||
bool transpose_a = false,
|
||||
bool transpose_b = false);
|
||||
|
||||
std::shared_ptr<ov::Node> makeReduce(const ov::Output<Node>& data,
|
||||
const ov::Output<Node>& axes,
|
||||
bool keepDims,
|
||||
|
@ -1,20 +0,0 @@
|
||||
// Copyright (C) 2018-2023 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "openvino/op/cum_sum.hpp"
|
||||
|
||||
#include "ov_models/builders.hpp"
|
||||
|
||||
namespace ngraph {
|
||||
namespace builder {
|
||||
|
||||
std::shared_ptr<ov::Node> makeCumSum(const ov::Output<Node>& in,
|
||||
const ov::Output<Node>& axis,
|
||||
bool exclusive,
|
||||
bool reverse) {
|
||||
return std::make_shared<ov::op::v0::CumSum>(in, axis, exclusive, reverse);
|
||||
}
|
||||
|
||||
} // namespace builder
|
||||
} // namespace ngraph
|
@ -1,16 +0,0 @@
|
||||
// Copyright (C) 2018-2023 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "openvino/op/matmul.hpp"
|
||||
#include "ov_models/builders.hpp"
|
||||
|
||||
namespace ngraph {
|
||||
namespace builder {
|
||||
|
||||
std::shared_ptr<Node> makeMatMul(const Output<Node>& A, const Output<Node>& B, bool transpose_a, bool transpose_b) {
|
||||
return std::make_shared<ov::op::v0::MatMul>(A, B, transpose_a, transpose_b);
|
||||
}
|
||||
|
||||
} // namespace builder
|
||||
} // namespace ngraph
|
@ -1,19 +0,0 @@
|
||||
// Copyright (C) 2018-2023 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "openvino/op/select.hpp"
|
||||
|
||||
#include "ov_models/builders.hpp"
|
||||
|
||||
namespace ngraph {
|
||||
namespace builder {
|
||||
|
||||
std::shared_ptr<ov::Node> makeSelect(std::vector<ov::Output<Node>>& in,
|
||||
const ov::op::AutoBroadcastSpec& auto_broadcast) {
|
||||
auto selectNode = std::make_shared<ov::op::v1::Select>(in[0], in[1], in[2], auto_broadcast);
|
||||
return selectNode;
|
||||
}
|
||||
|
||||
} // namespace builder
|
||||
} // namespace ngraph
|
@ -1,20 +0,0 @@
|
||||
// Copyright (C) 2018-2023 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "openvino/op/shuffle_channels.hpp"
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "ov_models/builders.hpp"
|
||||
|
||||
namespace ngraph {
|
||||
namespace builder {
|
||||
|
||||
std::shared_ptr<Node> makeShuffleChannels(const ov::Output<Node>& in, int axis, int group) {
|
||||
return std::make_shared<ov::op::v0::ShuffleChannels>(in, axis, group);
|
||||
}
|
||||
|
||||
} // namespace builder
|
||||
} // namespace ngraph
|
@ -1,18 +0,0 @@
|
||||
// Copyright (C) 2018-2023 Intel Corporation
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
//
|
||||
|
||||
#include "ov_models/builders.hpp"
|
||||
|
||||
namespace ngraph {
|
||||
namespace builder {
|
||||
|
||||
std::shared_ptr<ov::Node> makeSpaceToDepth(const ov::Output<Node>& in,
|
||||
ov::op::v0::SpaceToDepth::SpaceToDepthMode mode,
|
||||
size_t blockSize) {
|
||||
auto dtsNode = std::make_shared<ov::op::v0::SpaceToDepth>(in, mode, blockSize);
|
||||
return dtsNode;
|
||||
}
|
||||
|
||||
} // namespace builder
|
||||
} // namespace ngraph
|
Loading…
Reference in New Issue
Block a user