[TF FE]Support Inv operation for TensorFlow models (#20720)

* [TF FE]Support Inv operation for TensorFlow models

* added test tests/layer_tests/tensorflow_tests/test_tf_Inv.py and src/frontends/tensorflow_common/src/op/inv.cpp

* Update tests/layer_tests/tensorflow_tests/test_tf_Inv.py

* Update tests/layer_tests/tensorflow_tests/test_tf_Inv.py

* Update tests/layer_tests/tensorflow_tests/test_tf_Inv.py

---------

Co-authored-by: Roman Kazantsev <roman.kazantsev@intel.com>
This commit is contained in:
rsato10 2023-10-31 00:39:16 -07:00 committed by GitHub
parent 7f04ad69c2
commit 53820c0cf2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 76 additions and 0 deletions

View File

@ -194,6 +194,7 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
{"HashTableV2", CreatorFunction(translate_hash_table_op)},
{"Identity", CreatorFunction(translate_identity_op)},
{"IdentityN", CreatorFunction(translate_identity_n_op)},
{"Inv", CreatorFunction(translate_inv_op)},
{"If", CreatorFunction(translate_if_op)},
{"input_arg", CreatorFunction(translate_input_arg_op)},
{"Iterator", CreatorFunction(translate_iterator_op)},

View File

@ -76,6 +76,7 @@ OP_CONVERTER(translate_gather_tree_op);
OP_CONVERTER(translate_identity_op);
OP_CONVERTER(translate_identity_n_op);
OP_CONVERTER(translate_input_arg_op);
OP_CONVERTER(translate_inv_op);
OP_CONVERTER(translate_invert_permutation_op);
OP_CONVERTER(translate_output_arg_op);
OP_CONVERTER(translate_interpolate_op);

View File

@ -0,0 +1,30 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "common_op_table.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/divide.hpp"
using namespace std;
using namespace ov::op;
namespace ov {
namespace frontend {
namespace tensorflow {
namespace op {
OutputVector translate_inv_op(const NodeContext& node) {
default_op_checks(node, 1, {"Inv"});
auto x = node.get_input(0);
// prepare auxiliary one constants of the same type as the inputs
auto one = create_same_type_const_scalar<int32_t>(x, 1);
auto inv = make_shared<v1::Divide>(one, x);
set_node_name(node.get_name(), inv);
return inv->outputs();
}
} // namespace op
} // namespace tensorflow
} // namespace frontend
} // namespace ov

View File

@ -0,0 +1,44 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
class TestInv(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'x' in inputs_info
x_shape = inputs_info['x']
inputs_data = {}
inputs_data['x'] = np.random.choice([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], x_shape).astype(np.float32)
return inputs_data
def create_inv_net(self, input_shape, input_type):
self.input_type = input_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(input_type, input_shape, 'x')
tf.raw_ops.Inv(x=x)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(input_shape=[], input_type=np.float32),
dict(input_shape=[10, 20], input_type=np.float32),
dict(input_shape=[2, 3, 4], input_type=np.float32),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_inv_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_inv_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)