Add aten stack transformation (#15311)

* add support for aten::stack

* add new lines

* updated aten stack transformation

* add comments to the code

---------

Co-authored-by: Maxim Vafin <maxim.vafin@intel.com>
Co-authored-by: Andrei Kochin <andrei.kochin@intel.com>
This commit is contained in:
Bartek Szmelczynski 2023-02-02 20:15:28 +01:00 committed by GitHub
parent d8dfcac729
commit 566fae2b01
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 169 additions and 0 deletions

View File

@ -15,6 +15,7 @@
#include "transforms/append_list_unpack_replacer.hpp"
#include "transforms/aten_cat_replacer.hpp"
#include "transforms/aten_getitem_replacer.hpp"
#include "transforms/aten_stack_list_construct_replacer.hpp"
#include "transforms/listconstruct_reshape_replacer.hpp"
#include "transforms/max_prim_list_construct_replacer.hpp"
#include "transforms/prim_list_construct_pad.hpp"
@ -86,6 +87,7 @@ void FrontEnd::normalize(const std::shared_ptr<ov::Model>& model) const {
manager.register_pass<ov::pass::UnrollIf>();
manager.register_pass<ov::frontend::pytorch::pass::AtenCatToConcat>();
manager.register_pass<ov::frontend::pytorch::pass::AppendListUnpackReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::AtenStackListConstructReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::PrimListUnpackReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::AtenGetItemReplacer>();
manager.register_pass<ov::frontend::pytorch::pass::MaxPrimListConstructReplacer>();

View File

@ -0,0 +1,66 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "aten_stack_list_construct_replacer.hpp"
#include "openvino/core/rt_info.hpp"
#include "openvino/op/util/framework_node.hpp"
#include "openvino/opsets/opset10.hpp"
#include "openvino/pass/pattern/matcher.hpp"
#include "openvino/pass/pattern/op/wrap_type.hpp"
#include "utils.hpp"
using namespace ov::pass::pattern;
namespace ov {
namespace frontend {
namespace pytorch {
namespace pass {
AtenStackListConstructReplacer::AtenStackListConstructReplacer() {
auto list_construct = ov::pass::pattern::wrap_type<ov::op::util::FrameworkNode>();
auto axis = ov::pass::pattern::wrap_type<opset10::Constant>();
// We search for a pattern: ListConstruct -> aten::stack <- Constant
auto stack = ov::pass::pattern::wrap_type<ov::op::util::FrameworkNode>({list_construct, axis});
ov::matcher_pass_callback callback = [=](ov::pass::pattern::Matcher& m) {
auto stack = cast_fw_node(m.get_match_root(), "aten::stack");
if (!stack) {
return false;
}
const auto& pattern_map = m.get_pattern_value_map();
auto input_node = pattern_map.at(list_construct).get_node_shared_ptr();
auto axis_node = pattern_map.at(axis).get_node_shared_ptr();
auto axis_const = std::dynamic_pointer_cast<opset10::Constant>(axis_node);
auto axis = axis_const->cast_vector<int64_t>();
// Check if ListConstruct is an input
if (auto list_construct_node = cast_fw_node(input_node, "prim::ListConstruct")) {
const auto& list_inputs = list_construct_node->input_values();
OutputVector node_vector;
auto zero = opset10::Constant::create(element::i32, Shape{}, {0});
// Iterate over values in ListConstruct
for (const auto& list_input : list_inputs) {
auto node = concat_list_construct(list_input.get_node_shared_ptr());
auto unsqueezed_node = std::make_shared<opset10::Unsqueeze>(node, axis_const);
node_vector.push_back(unsqueezed_node);
}
// Concat vectors on provided axis
auto concat = std::make_shared<opset10::Concat>(node_vector, axis[0]);
copy_runtime_info({stack, input_node}, concat);
replace_node(stack, concat);
return true;
}
return false;
};
auto m = std::make_shared<Matcher>(stack, "ov::frontend::pytorch::pass::AtenStackListConstructReplacer");
this->register_matcher(m, callback);
};
} // namespace pass
} // namespace pytorch
} // namespace frontend
} // namespace ov

View File

@ -0,0 +1,24 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include "openvino/pass/graph_rewrite.hpp"
#include "openvino/pass/pass.hpp"
namespace ov {
namespace frontend {
namespace pytorch {
namespace pass {
class AtenStackListConstructReplacer : public ov::pass::MatcherPass {
public:
OPENVINO_RTTI("ov::frontend::pytorch::pass::AtenStackListConstructReplacer");
AtenStackListConstructReplacer();
};
} // namespace pass
} // namespace pytorch
} // namespace frontend
} // namespace ov

View File

@ -0,0 +1,77 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestStack2D(PytorchLayerTest):
def _prepare_input(self):
return self.input_tensors
def create_model(self, dim):
import torch
class aten_stack(torch.nn.Module):
def __init__(self, dim):
super(aten_stack, self).__init__()
self.dim = dim
def forward(self, x, y):
inputs = [x, y]
return torch.stack(inputs, self.dim)
ref_net = None
return aten_stack(dim), ref_net, "aten::stack"
@pytest.mark.parametrize("input_tensor", ([
[np.random.rand(1, 3, 3), np.random.rand(1, 3, 3)],
[np.random.rand(4, 4, 2), np.random.rand(4, 4, 2)],
[np.random.rand(8, 1, 1, 9), np.random.rand(8, 1, 1, 9)]
]))
@pytest.mark.parametrize("dim", ([
0, 1, 2,
]))
@pytest.mark.nightly
@pytest.mark.precommit
def test_stack2D(self, input_tensor, dim, ie_device, precision, ir_version):
self.input_tensors = input_tensor
self._test(*self.create_model(dim), ie_device, precision, ir_version)
class TestStack3D(PytorchLayerTest):
def _prepare_input(self):
return self.input_tensors
def create_model(self, dim):
import torch
class aten_stack(torch.nn.Module):
def __init__(self, dim):
super(aten_stack, self).__init__()
self.dim = dim
def forward(self, x, y, z):
inputs = [x, y, z]
return torch.stack(inputs, self.dim)
ref_net = None
return aten_stack(dim), ref_net, "aten::stack"
@pytest.mark.parametrize("input_tensor", ([
[np.random.rand(1, 3, 3), np.random.rand(1, 3, 3), np.random.rand(1, 3, 3)],
[np.random.rand(4, 4, 2), np.random.rand(4, 4, 2), np.random.rand(4, 4, 2)],
[np.random.rand(8, 1, 1, 9), np.random.rand(8, 1, 1, 9), np.random.rand(8, 1, 1, 9)]
]))
@pytest.mark.parametrize("dim", ([
0, 1, 2,
]))
@pytest.mark.nightly
@pytest.mark.precommit
def test_stack3D(self, input_tensor, dim, ie_device, precision, ir_version):
self.input_tensors = input_tensor
self._test(*self.create_model(dim), ie_device, precision, ir_version)