Enable nonnull-compare flag for nGraph (#5213)
* Enable nonnull-compare flag for nGraph * Fixed checks * Fixed MSVC * Fixed build
This commit is contained in:
parent
3bbc9d2837
commit
5a111bfb27
@ -83,7 +83,6 @@ option(NGRAPH_LIB_VERSIONING_ENABLE "Enable shared library versioning" OFF)
|
||||
option(NGRAPH_PYTHON_BUILD_ENABLE "Enable build nGraph python package wheel" OFF)
|
||||
option(NGRAPH_DYNAMIC_COMPONENTS_ENABLE "Enable dynamic loading of components" ON)
|
||||
option(NGRAPH_EXPORT_TARGETS_ENABLE "Enable exporting nGraph cmake export targets" ON)
|
||||
option(NGRAPH_WARNINGS_AS_ERRORS "Make all nGraph compile-time warnings into errors" OFF)
|
||||
option(NGRAPH_ADDRESS_SANITIZER_ENABLE "Compiles and links with Address Sanitizer" OFF)
|
||||
option(NGRAPH_THREAD_SANITIZER_ENABLE "Compiles and links with Thread Sanitizer" OFF)
|
||||
option(NGRAPH_UB_SANITIZER_ENABLE "Compiles and links with Undefined Behavior Sanitizer" OFF)
|
||||
@ -109,7 +108,6 @@ message(STATUS "NGRAPH_THREAD_SANITIZER_ENABLE: ${NGRAPH_THREAD_SANITIZER_
|
||||
message(STATUS "NGRAPH_UB_SANITIZER_ENABLE: ${NGRAPH_UB_SANITIZER_ENABLE}")
|
||||
message(STATUS "NGRAPH_USE_PROTOBUF_LITE: ${NGRAPH_USE_PROTOBUF_LITE}")
|
||||
message(STATUS "NGRAPH_UNIT_TEST_ENABLE: ${NGRAPH_UNIT_TEST_ENABLE}")
|
||||
message(STATUS "NGRAPH_WARNINGS_AS_ERRORS: ${NGRAPH_WARNINGS_AS_ERRORS}")
|
||||
|
||||
# Setup CMAKE_ARGS to be forwarded to External Projects
|
||||
set(NGRAPH_FORWARD_CMAKE_ARGS
|
||||
@ -199,7 +197,10 @@ if (WIN32)
|
||||
string(REPLACE "/W3" "/W0" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
|
||||
endif()
|
||||
|
||||
if (NOT WIN32 AND NGRAPH_WARNINGS_AS_ERRORS)
|
||||
if (NOT CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 6.0))
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wnonnull-compare")
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Werror")
|
||||
endif()
|
||||
|
||||
|
@ -103,8 +103,7 @@ namespace clamp
|
||||
bool op::v0::Clamp::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Clamp_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return clamp::evaluate_clamp(inputs[0], outputs[0], get_min(), get_max());
|
||||
}
|
||||
|
||||
|
@ -141,9 +141,9 @@ namespace
|
||||
bool op::Concat::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Concat_evaluate);
|
||||
NGRAPH_CHECK(this, !inputs.empty());
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, inputs.size()));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(!inputs.empty());
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, inputs.size()));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
auto concat_axis = get_axis() < 0 ? get_axis() + inputs[0]->get_shape().size() : get_axis();
|
||||
return evaluate_concat(inputs, outputs[0], concat_axis);
|
||||
}
|
||||
@ -155,4 +155,4 @@ bool op::Concat::evaluate_lower(const HostTensorVector& output_values) const
|
||||
bool op::Concat::evaluate_upper(const HostTensorVector& output_values) const
|
||||
{
|
||||
return default_upper_bound_evaluator(this, output_values);
|
||||
}
|
||||
}
|
||||
|
@ -150,8 +150,8 @@ bool op::v0::Convert::evaluate(const HostTensorVector& output_values,
|
||||
const HostTensorVector& input_values) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Convert_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(input_values, 1));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(input_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
return convert::evaluate_convert(input_values[0], output_values[0]);
|
||||
}
|
||||
|
||||
|
@ -68,7 +68,6 @@ namespace expop
|
||||
bool op::Exp::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Exp_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return expop::evaluate_exp(inputs[0], outputs[0]);
|
||||
}
|
||||
|
@ -488,8 +488,8 @@ bool op::v1::Gather::evaluate_gather(const HostTensorVector& outputs,
|
||||
bool op::v1::Gather::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v1_Gather_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
return evaluate_gather(outputs, inputs);
|
||||
}
|
||||
|
||||
@ -548,8 +548,8 @@ bool op::v7::Gather::evaluate_gather(const HostTensorVector& outputs,
|
||||
bool op::v7::Gather::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v7_Gather_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
return evaluate_gather(outputs, inputs);
|
||||
}
|
||||
|
||||
|
@ -187,7 +187,6 @@ namespace gelu
|
||||
bool op::v7::Gelu::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v7_Gelu_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return gelu::evaluate_gelu(inputs[0], outputs[0], m_approximation_mode);
|
||||
}
|
||||
|
@ -66,7 +66,6 @@ bool op::v5::HSigmoid::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v5_HSigmoid_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return evaluate_hsigmoid(inputs[0], outputs[0]);
|
||||
}
|
||||
|
@ -64,7 +64,6 @@ namespace hswish
|
||||
bool op::v4::HSwish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v4_HSwish_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return hswish::evaluate_hswish(inputs[0], outputs[0]);
|
||||
}
|
||||
|
@ -67,8 +67,8 @@ bool op::v1::ReduceMin::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v1_ReduceMin_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
return minop::evaluate_min(inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||
}
|
||||
|
||||
@ -84,4 +84,4 @@ bool op::v1::ReduceMin::evaluate_upper(const HostTensorVector& output_values) co
|
||||
if (!input_value(1).get_tensor().has_and_set_bound())
|
||||
return false;
|
||||
return default_upper_bound_evaluator(this, output_values);
|
||||
}
|
||||
}
|
||||
|
@ -71,7 +71,6 @@ namespace mish
|
||||
bool op::v4::Mish::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v4_Mish_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return mish::evaluate_mish(inputs[0], outputs[0]);
|
||||
}
|
||||
|
@ -78,7 +78,6 @@ namespace prelu
|
||||
bool op::PRelu::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_PRelu_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 2));
|
||||
return prelu::evaluate_prelu(inputs[0], inputs[1], outputs[0]);
|
||||
}
|
||||
|
@ -73,8 +73,8 @@ bool op::v1::ReduceProd::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v1_ReduceProd_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
return reduce_prod::evaluate_product(
|
||||
inputs[0], outputs[0], get_reduction_axes(), get_keep_dims());
|
||||
}
|
||||
|
@ -63,8 +63,7 @@ namespace relu
|
||||
bool op::Relu::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Relu_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return relu::evaluate_relu(inputs[0], outputs[0]);
|
||||
}
|
||||
|
||||
|
@ -323,8 +323,8 @@ bool op::v1::Reshape::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v1_Reshape_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
return evaluate_reshape(outputs, inputs);
|
||||
}
|
||||
|
||||
|
@ -91,9 +91,9 @@ bool op::v3::ScatterNDUpdate::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v3_ScatterNDUpdate_evaluate);
|
||||
NGRAPH_CHECK(this, !inputs.empty());
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(!inputs.empty());
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
|
||||
return scatter::evaluate_scatter(inputs[0], inputs[1], inputs[2], outputs[0]);
|
||||
}
|
||||
|
@ -146,8 +146,8 @@ bool op::v1::Select::evaluate(const HostTensorVector& output_values,
|
||||
const HostTensorVector& input_values) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v1_Select_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(input_values, 3));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(input_values, 3));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
const auto autob = get_auto_broadcast();
|
||||
return detail::evaluate_select(
|
||||
output_values, input_values, autob, output_values[0]->get_element_type());
|
||||
|
@ -216,8 +216,8 @@ bool op::v3::ShapeOf::evaluate(const HostTensorVector& output_values,
|
||||
const HostTensorVector& input_values) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v3_ShapeOf_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(input_values, 1));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(input_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
return shape_of::evaluate_shape_of(output_values[0], input_values[0]);
|
||||
}
|
||||
|
||||
@ -280,8 +280,8 @@ bool op::v0::ShapeOf::evaluate(const HostTensorVector& output_values,
|
||||
const HostTensorVector& input_values) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_ShapeOf_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(input_values, 1));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(input_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
return shape_of::evaluate_shape_of(output_values[0], input_values[0]);
|
||||
}
|
||||
|
||||
@ -301,4 +301,4 @@ bool op::v0::ShapeOf::evaluate_lower(const HostTensorVector& output_values) cons
|
||||
bool op::v0::ShapeOf::evaluate_upper(const HostTensorVector& output_values) const
|
||||
{
|
||||
return shape_of::evaluate_bound_shape(this, output_values, true);
|
||||
}
|
||||
}
|
||||
|
@ -64,7 +64,6 @@ namespace sigmoid
|
||||
bool op::Sigmoid::evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Sigmoid_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return sigmoid::evaluate_sigmoid(inputs[0], outputs[0]);
|
||||
}
|
||||
|
@ -94,8 +94,7 @@ bool op::v1::Softmax::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v1_Softmax_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
outputs[0]->set_unary(inputs[0]);
|
||||
return evaluate_softmax(inputs[0], outputs[0], AxisSet{m_axis});
|
||||
}
|
||||
|
@ -71,7 +71,6 @@ bool op::v4::SoftPlus::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v4_SoftPlus_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1) && validate_host_tensor_vector(inputs, 1));
|
||||
return softplus::evaluate_softplus(inputs[0], outputs[0]);
|
||||
}
|
||||
|
@ -202,14 +202,14 @@ bool op::v0::Squeeze::evaluate(const HostTensorVector& outputs,
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Squeeze_evaluate);
|
||||
// TODO: change the behaviour after the support of Squeeze with one input
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, inputs.size()));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, inputs.size()));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
return squeeze::evaluate_squeeze(inputs[0], inputs[1], outputs[0]);
|
||||
}
|
||||
|
||||
bool op::v0::Squeeze::evaluate_lower(const HostTensorVector& output_values) const
|
||||
{
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
if (inputs().size() > 1 && !input_value(1).get_tensor().has_and_set_bound())
|
||||
return false;
|
||||
return default_lower_bound_evaluator(this, output_values);
|
||||
@ -217,7 +217,7 @@ bool op::v0::Squeeze::evaluate_lower(const HostTensorVector& output_values) cons
|
||||
|
||||
bool op::v0::Squeeze::evaluate_upper(const HostTensorVector& output_values) const
|
||||
{
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
if (inputs().size() > 1 && !input_value(1).get_tensor().has_and_set_bound())
|
||||
return false;
|
||||
return default_upper_bound_evaluator(this, output_values);
|
||||
|
@ -274,8 +274,8 @@ bool op::v1::StridedSlice::evaluate(const HostTensorVector& output_values,
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v1_StridedSlice_evaluate);
|
||||
// FIXME: 4th input is optional, but it is required by the following code
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(input_values, 4));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(input_values, 4));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
return strided_slice::evaluate_strided_slice(input_values[0],
|
||||
input_values[1],
|
||||
input_values[2],
|
||||
@ -304,4 +304,4 @@ bool op::v1::StridedSlice::evaluate_upper(const HostTensorVector& output_values)
|
||||
!input_value(3).get_tensor().has_and_set_bound())
|
||||
return false;
|
||||
return default_upper_bound_evaluator(this, output_values);
|
||||
}
|
||||
}
|
||||
|
@ -123,8 +123,7 @@ bool op::v4::Swish::evaluate(const HostTensorVector& outputs, const HostTensorVe
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v4_Swish_evaluate);
|
||||
NGRAPH_CHECK(
|
||||
this,
|
||||
validate_host_tensor_vector(outputs, 1) &&
|
||||
(validate_host_tensor_vector(inputs, 2) || validate_host_tensor_vector(inputs, 1)));
|
||||
(validate_host_tensor_vector(inputs, 2) || validate_host_tensor_vector(inputs, 1)));
|
||||
return swish::evaluate_swish(inputs, outputs[0]);
|
||||
}
|
||||
|
@ -138,8 +138,8 @@ bool op::v0::Unsqueeze::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(v0_Unsqueeze_evaluate);
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 2));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
return unsqueeze::evaluate_unsqueeze(inputs[0], inputs[1], outputs[0]);
|
||||
}
|
||||
|
||||
|
@ -58,7 +58,7 @@ bool op::util::BinaryElementwiseArithmetic::visit_attributes(AttributeVisitor& v
|
||||
bool op::util::BinaryElementwiseArithmetic::evaluate_upper(
|
||||
const HostTensorVector& output_values) const
|
||||
{
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
HostTensorVector lower_output_tensors;
|
||||
for (const auto& output : output_values)
|
||||
lower_output_tensors.push_back(
|
||||
@ -71,7 +71,7 @@ bool op::util::BinaryElementwiseArithmetic::evaluate_upper(
|
||||
bool op::util::BinaryElementwiseArithmetic::evaluate_lower(
|
||||
const HostTensorVector& output_values) const
|
||||
{
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(output_values, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(output_values, 1));
|
||||
HostTensorVector upper_output_tensors;
|
||||
for (const auto& output : output_values)
|
||||
upper_output_tensors.push_back(
|
||||
@ -79,4 +79,4 @@ bool op::util::BinaryElementwiseArithmetic::evaluate_lower(
|
||||
if (!interval_bound_evaluator(this, output_values, upper_output_tensors))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -513,9 +513,8 @@ bool op::util::BroadcastBase::evaluate(const HostTensorVector& outputs,
|
||||
const HostTensorVector& inputs) const
|
||||
{
|
||||
NGRAPH_OP_SCOPE(util_BroadcastBase_evaluate);
|
||||
NGRAPH_CHECK(this,
|
||||
validate_host_tensor_vector(inputs, 2) || validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(this, validate_host_tensor_vector(outputs, 1));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(inputs, 2) || validate_host_tensor_vector(inputs, 3));
|
||||
NGRAPH_CHECK(validate_host_tensor_vector(outputs, 1));
|
||||
|
||||
Shape target_shape = get_target_shape(inputs[1]);
|
||||
|
||||
|
@ -41,7 +41,7 @@ namespace ngraph
|
||||
// Input shape: [N, C, H, W, D]
|
||||
// Input spatial dimensions are H, W and D
|
||||
// Expected spatial dims indexes: [2, 3, 4]
|
||||
uint64_t data_spatial_rank = data_rank_value - 2;
|
||||
size_t data_spatial_rank = data_rank_value - 2;
|
||||
auto reduce_axes_vector = std::vector<std::int64_t>(data_spatial_rank);
|
||||
std::iota(reduce_axes_vector.begin(), reduce_axes_vector.end(), 2);
|
||||
auto reduce_axes = default_opset::Constant::create(
|
||||
|
@ -41,7 +41,7 @@ namespace ngraph
|
||||
// Input shape: [N, C, H, W, D]
|
||||
// Input spatial dimensions are H, W and D
|
||||
// Expected spatial dims indexes: [2, 3, 4]
|
||||
uint64_t data_spatial_rank = data_rank_value - 2;
|
||||
size_t data_spatial_rank = data_rank_value - 2;
|
||||
auto reduce_axes_vector = std::vector<std::int64_t>(data_spatial_rank);
|
||||
std::iota(reduce_axes_vector.begin(), reduce_axes_vector.end(), 2);
|
||||
auto reduce_axes = default_opset::Constant::create(
|
||||
|
Loading…
Reference in New Issue
Block a user