Refactored VPU tests not to use old interfaces (#3888)

* Refactored VPU tests not to use old interfaces

* Added except of exceptions

* Commented failing part of HDDL tests
This commit is contained in:
Ilya Lavrenov 2021-01-21 15:05:12 +03:00 committed by GitHub
parent 05d97fa24a
commit 61ccde700f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
51 changed files with 808 additions and 1381 deletions

View File

@ -37,7 +37,7 @@ TEST_P(InferRequestTests, SetEmptyConfig) {
// Create CNNNetwork from ngrpah::Function
InferenceEngine::CNNNetwork cnnNet(function);
// Load CNNNetwork to target plugins
InferenceEngine::IExecutableNetwork::Ptr execNet;
InferenceEngine::ExecutableNetwork execNet;
std::map<std::string, std::string> config {};
if (targetDevice.find(CommonTestUtils::DEVICE_MULTI) == std::string::npos &&
targetDevice.find(CommonTestUtils::DEVICE_HETERO) == std::string::npos) {
@ -55,7 +55,7 @@ TEST_P(InferRequestTests, canLoadCorrectNetworkToGetExecutable) {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
// Create CNNNetwork from ngrpah::Function
InferenceEngine::CNNNetwork cnnNet(function);
InferenceEngine::IExecutableNetwork::Ptr execNet;
InferenceEngine::ExecutableNetwork execNet;
ASSERT_NO_THROW(execNet = ie->LoadNetwork(cnnNet, targetDevice, configuration));
}
@ -64,7 +64,7 @@ TEST_P(InferRequestTests, CanCreateTwoExeNetworks) {
SKIP_IF_CURRENT_TEST_IS_DISABLED()
// Create CNNNetwork from ngrpah::Function
InferenceEngine::CNNNetwork cnnNet(function);
InferenceEngine::IExecutableNetwork::Ptr execNet;
InferenceEngine::ExecutableNetwork execNet;
for (auto i = 0; i < 2; i++) {
ASSERT_NO_THROW(execNet = ie->LoadNetwork(cnnNet, targetDevice, configuration));
ASSERT_NE(nullptr, cnnNet.getFunction());

View File

@ -21,8 +21,7 @@ void MyriadLoadNetworkTestCase::SetUp() {
}
void MyriadLoadNetworkTestCase::LoadNetwork() {
ASSERT_NO_THROW(InferenceEngine::IExecutableNetwork::Ptr exe_network =
ie->LoadNetwork(cnnNetwork, "MYRIAD"));
ASSERT_NO_THROW(ie->LoadNetwork(cnnNetwork, "MYRIAD"));
}
bool MyriadLoadNetworkTestCase::IsDeviceAvailable(std::string device_name) {

View File

@ -21,9 +21,7 @@ class MyriadProtocolTests : public testing::Test,
public MyriadDevicesInfo {
public:
// IE variables
InferenceEngine::IInferRequest::Ptr request;
InferenceEngine::ResponseDesc resp;
StatusCode statusCode = StatusCode::GENERAL_ERROR;
InferenceEngine::InferRequest request;
static std::shared_ptr<InferenceEngine::Core> ie;
// MVNC variables

View File

@ -17,18 +17,13 @@ TEST_P(MyriadProtocolTests, CanInferenceWithProtocol) {
std::map<std::string, std::string> config = getConfigForProtocol(protocol);
InferenceEngine::IExecutableNetwork::Ptr exe_network =
InferenceEngine::ExecutableNetwork exe_network =
ie->LoadNetwork(network, "MYRIAD", config);
ASSERT_NO_THROW(statusCode = exe_network->CreateInferRequest(request, &resp));
ASSERT_EQ(statusCode, StatusCode::OK) << resp.msg;
ASSERT_NO_THROW(statusCode = request->Infer(&resp));
ASSERT_EQ(statusCode, StatusCode::OK) << resp.msg;
ASSERT_NO_THROW(request = exe_network.CreateInferRequest());
ASSERT_NO_THROW(request.Infer());
}
TEST_P(MyriadProtocolTests, NoErrorsMessagesWhenLoadNetworkSuccessful) {
if (protocol != NC_USB) {
GTEST_SKIP();
@ -42,11 +37,10 @@ TEST_P(MyriadProtocolTests, NoErrorsMessagesWhenLoadNetworkSuccessful) {
std::map<std::string, std::string> config = {{CONFIG_KEY(LOG_LEVEL), CONFIG_VALUE(LOG_WARNING)}};
InferenceEngine::IExecutableNetwork::Ptr exe_network =
InferenceEngine::ExecutableNetwork exe_network =
ie->LoadNetwork(network, "MYRIAD", config);
setbuf(stdout, NULL);
std::string content(buff);
for (int i = MVLOG_WARN; i < MVLOG_LAST; i++) {
auto found = content.find(mvLogHeader[i]);

View File

@ -17,7 +17,7 @@ namespace Regression { namespace Matchers {
class ClassificationMatcher : public BaseMatcher {
private:
size_t checkResultNumber;
std::vector<std::shared_ptr<InferenceEngine::IExecutableNetwork>> _executableNetworks;
std::vector<InferenceEngine::ExecutableNetwork> _executableNetworks;
std::vector <std::vector<Reference::LabelProbability>> _results;
ResponseDesc _resp;
InferenceEngine::InputsDataMap _inputsInfo;

View File

@ -14,22 +14,11 @@ public:
IECoreAdapter(
std::shared_ptr<InferenceEngine::Core> ieCore, std::string deviceName);
// -----------------------------------------
// IInferencePlugin API (deprecated). Begin.
// - InferenceEngine::ICNNNetwork is replaced by InferenceEngine::CNNNetwork
// -----------------------------------------
InferenceEngine::ExecutableNetwork LoadNetwork(const InferenceEngine::CNNNetwork & network,
const std::map<std::string, std::string>& config = {});
InferenceEngine::StatusCode LoadNetwork(
InferenceEngine::IExecutableNetwork::Ptr& ret, InferenceEngine::CNNNetwork network,
const std::map<std::string, std::string>& config, InferenceEngine::ResponseDesc* resp) noexcept;
InferenceEngine::StatusCode ImportNetwork(
InferenceEngine::IExecutableNetwork::Ptr& ret, const std::string& modelFileName,
const std::map<std::string, std::string>& config, InferenceEngine::ResponseDesc* resp) noexcept;
// -----------------------------------------
// IInferencePlugin API (deprecated). End.
// -----------------------------------------
InferenceEngine::ExecutableNetwork ImportNetwork(const std::string& modelFileName,
const std::map<std::string, std::string>& config = {});
InferenceEngine::ExecutableNetwork ImportNetwork(std::istream& networkModel,
const std::map<std::string, std::string>& config = {});

View File

@ -213,18 +213,14 @@ inline void TopResults(unsigned int n, TBlob<T>& input, std::vector<unsigned>& o
void ClassificationMatcher::match_n(size_t top, int index) {
try {
InferenceEngine::IInferRequest::Ptr inferRequest;
if (_executableNetworks[index]->CreateInferRequest(inferRequest, &_resp) != OK) {
THROW_IE_EXCEPTION << "Can not create infer request: " << _resp.msg;
}
auto inferRequest = _executableNetworks[index].CreateInferRequest();
std::string prevImageName = "";
auto batchSize = config.batchSize;
if (config.useDynamicBatching) {
batchSize = config.dynBatch;
InferenceEngine::ResponseDesc resp;
inferRequest->SetBatch(batchSize, &resp);
inferRequest.SetBatch(batchSize);
}
if (config._paths_to_images.size() % batchSize != 0) {
@ -249,25 +245,14 @@ void ClassificationMatcher::match_n(size_t top, int index) {
for (int j = 0; j != batchSize; j++) {
const auto & imageName = config._paths_to_images[i + j];
InferenceEngine::Blob::Ptr inputBlob;
if (inferRequest->GetBlob(_inputsInfo.begin()->first.c_str(), inputBlob, &_resp) != OK) {
THROW_IE_EXCEPTION << "Can not get input with name: " << _inputsInfo.begin()->first
<< " error message: " << _resp.msg;
}
auto inputBlob = inferRequest.GetBlob(_inputsInfo.begin()->first.c_str());
loadImage(imageName, inputBlob, true, j);
}
}
StatusCode status = inferRequest->Infer(&_resp);
if (status != OK) {
THROW_IE_EXCEPTION << "Can not do infer: " << _resp.msg;
}
inferRequest.Infer();
InferenceEngine::Blob::Ptr outputBlobPtr;
if (inferRequest->GetBlob(_outputsInfo.begin()->first.c_str(), outputBlobPtr, &_resp) != OK) {
THROW_IE_EXCEPTION << "Can not get output with name: " << _outputsInfo.begin()->first
<< " error message: " << _resp.msg;
}
auto outputBlobPtr = inferRequest.GetBlob(_outputsInfo.begin()->first.c_str());
InferenceEngine::TBlob<float>::Ptr outputFP32;
if (outputBlobPtr->getTensorDesc().getPrecision() == InferenceEngine::Precision::FP16) {

View File

@ -12,32 +12,16 @@ using IECorePtr = std::shared_ptr<InferenceEngine::Core>;
IECoreAdapter::IECoreAdapter(IECorePtr ieCore, std::string deviceName)
: m_ieCore(ieCore), m_deviceName(deviceName) {}
StatusCode IECoreAdapter::LoadNetwork(
IExecutableNetwork::Ptr& ret, CNNNetwork network,
const std::map<std::string, std::string>& config, ResponseDesc* resp) noexcept {
try {
ret = m_ieCore->LoadNetwork(network, m_deviceName, config);
} catch (const std::exception& ex) {
return DescriptionBuffer(GENERAL_ERROR, resp) << ex.what();
ExecutableNetwork IECoreAdapter::LoadNetwork(
const CNNNetwork & network,
const std::map<std::string, std::string>& config) {
return m_ieCore->LoadNetwork(network, m_deviceName, config);
}
return OK;
}
StatusCode IECoreAdapter::ImportNetwork(
IExecutableNetwork::Ptr& ret, const std::string& modelFileName,
const std::map<std::string, std::string>& config, ResponseDesc* resp) noexcept {
try {
ret = m_ieCore->ImportNetwork(modelFileName, m_deviceName, config);
} catch (const NetworkNotRead& ie_ex) {
return DescriptionBuffer(NETWORK_NOT_READ, resp) << ie_ex.what();
} catch (const std::exception& ex) {
return DescriptionBuffer(GENERAL_ERROR, resp) << ex.what();
}
return OK;
ExecutableNetwork IECoreAdapter::ImportNetwork(
const std::string& modelFileName,
const std::map<std::string, std::string>& config) {
return m_ieCore->ImportNetwork(modelFileName, m_deviceName, config);
}
ExecutableNetwork IECoreAdapter::ImportNetwork(

View File

@ -140,33 +140,12 @@ void SegmentationMatcher::match() {
executableNetwork = loadedExecutableNetwork;
}
InferenceEngine::IInferRequest::Ptr inferRequest;
sts = static_cast<IExecutableNetwork::Ptr&>(executableNetwork)->CreateInferRequest(inferRequest, &dsc);
if (sts != InferenceEngine::OK) {
THROW_IE_EXCEPTION << "Failed CreateInferRequest with error: " << dsc.msg;
}
sts = inferRequest->SetBlob(inputs.begin()->first.c_str(), input, &dsc);
if (sts != InferenceEngine::OK) {
THROW_IE_EXCEPTION << "Failed SetBlob with error: " << dsc.msg;
}
sts = inferRequest->SetBlob(outInfo.begin()->first.c_str(), output, &dsc);
if (sts != InferenceEngine::OK) {
THROW_IE_EXCEPTION << "Failed SetBlob with error: " << dsc.msg;
}
auto inferRequest = executableNetwork.CreateInferRequest();
inferRequest.SetBlob(inputs.begin()->first.c_str(), input);
inferRequest.SetBlob(outInfo.begin()->first.c_str(), output);
// Infer model
sts = inferRequest->Infer(&dsc);
// Check errors
if (sts == InferenceEngine::GENERAL_ERROR) {
THROW_IE_EXCEPTION << "Scoring failed! Critical error: " << dsc.msg;
} else if (sts == InferenceEngine::NOT_IMPLEMENTED) {
THROW_IE_EXCEPTION << "Scoring failed! Input data is incorrect and not supported!";
} else if (sts == InferenceEngine::NETWORK_NOT_LOADED) {
THROW_IE_EXCEPTION << "Scoring failed! " << dsc.msg;
}
inferRequest.Infer();
// Convert output data and save it to image
outArray = blobToImageOutputArray(output, nullptr, nullptr, &C);

View File

@ -43,15 +43,12 @@ TEST_P(myriadBlobTests_smoke, CanGetSameBlobsOnSameIR) {
const size_t countBlobsToDump = 3;
std::vector<std::string> filenames(countBlobsToDump);
for (int i = 0; i < countBlobsToDump; i++) {
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork,
{ {InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, HWConfigValue } }, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork,
{ {InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, HWConfigValue } }));
std::stringstream modelFilenameStream;
modelFilenameStream << "spltConvConcat" << i << ".blob";
filenames[i] = modelFilenameStream.str();
ASSERT_NO_THROW(_exeNetwork->Export(modelFilenameStream.str(), nullptr));
ASSERT_NO_THROW(_exeNetwork.Export(modelFilenameStream.str()));
}
for (int i = 0; i < filenames.size() - 1; i++) {
@ -74,8 +71,8 @@ using myriadBlobExportTests_smoke = myriadLayersTests_nightly;
TEST_F(myriadBlobExportTests_smoke, CanNotDoImportOnNonExistFile)
{
InferenceEngine::IExecutableNetwork::Ptr importedNetworkPtr;
ASSERT_EQ(StatusCode::NETWORK_NOT_READ, _vpuPluginPtr->ImportNetwork(importedNetworkPtr, "I_dont_exist.blob", {}, nullptr));
ASSERT_THROW(_vpuPluginPtr->ImportNetwork("I_dont_exist.blob"),
InferenceEngine::NetworkNotRead);
}
TEST_F(myriadBlobExportTests_smoke, CanInferImportedNetworkOnExportedBlob)
@ -83,17 +80,17 @@ TEST_F(myriadBlobExportTests_smoke, CanInferImportedNetworkOnExportedBlob)
auto fnPtr = ngraph::builder::subgraph::makeSplitConvConcat();
ASSERT_NO_THROW(_cnnNetwork = CNNNetwork(fnPtr));
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, { }, &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork));
std::stringstream modelFilenameStream;
modelFilenameStream << "SplitConvConcat" << ".blob";
ASSERT_EQ(StatusCode::OK, _exeNetwork->Export(modelFilenameStream.str(), &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork.Export(modelFilenameStream.str()));
InferenceEngine::IExecutableNetwork::Ptr importedNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->ImportNetwork(importedNetworkPtr, modelFilenameStream.str(), {}, &_resp)) << _resp.msg;
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->CreateInferRequest(inferRequest, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork importedNetwork;
ASSERT_NO_THROW(importedNetwork = _vpuPluginPtr->ImportNetwork(modelFilenameStream.str()));
ASSERT_EQ(StatusCode::OK, inferRequest->Infer(&_resp)) << _resp.msg;
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = importedNetwork.CreateInferRequest());
ASSERT_NO_THROW(inferRequest.Infer());
}
TEST_F(myriadBlobExportTests_smoke, CanGetPerfCountsImportedNetwork)
@ -101,20 +98,20 @@ TEST_F(myriadBlobExportTests_smoke, CanGetPerfCountsImportedNetwork)
auto fnPtr = ngraph::builder::subgraph::makeSplitConvConcat();
ASSERT_NO_THROW(_cnnNetwork = CNNNetwork(fnPtr));
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, {}, &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork));
std::stringstream modelFilenameStream;
modelFilenameStream << "splitConvConcat" << ".blob";
ASSERT_EQ(StatusCode::OK, _exeNetwork->Export(modelFilenameStream.str(), &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork.Export(modelFilenameStream.str()));
std::map<std::string, std::string> config = { {CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES)} };
InferenceEngine::IExecutableNetwork::Ptr importedNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->ImportNetwork(importedNetworkPtr, modelFilenameStream.str(), config, &_resp)) << _resp.msg;
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->CreateInferRequest(inferRequest, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork importedNetwork;
ASSERT_NO_THROW(importedNetwork = _vpuPluginPtr->ImportNetwork(modelFilenameStream.str(), config));
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = importedNetwork.CreateInferRequest());
ASSERT_EQ(StatusCode::OK, inferRequest->Infer(&_resp)) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
std::map<std::string, InferenceEngineProfileInfo> perfCounts;
ASSERT_EQ(StatusCode::OK, inferRequest->GetPerformanceCounts(perfCounts, &_resp)) << _resp.msg;
ASSERT_NO_THROW(perfCounts = inferRequest.GetPerformanceCounts());
ASSERT_NE(0, perfCounts.size());
for (const auto &perfInfoElem : perfCounts) {
@ -154,10 +151,10 @@ TEST_F(myriadConfigsWithBlobImportTests_smoke, TryingToSetCompileOptionPrintsWar
auto fnPtr = ngraph::builder::subgraph::makeSplitConvConcat();
ASSERT_NO_THROW(_cnnNetwork = CNNNetwork(fnPtr));
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, {}, &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork));
std::stringstream modelFilenameStream;
modelFilenameStream << "splitConvConcat" << ".blob";
ASSERT_EQ(StatusCode::OK, _exeNetwork->Export(modelFilenameStream.str(), &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork.Export(modelFilenameStream.str()));
std::map<std::string, std::string> config = { {InferenceEngine::MYRIAD_COPY_OPTIMIZATION, CONFIG_VALUE(YES)},
@ -167,8 +164,8 @@ TEST_F(myriadConfigsWithBlobImportTests_smoke, TryingToSetCompileOptionPrintsWar
{InferenceEngine::MYRIAD_NUMBER_OF_SHAVES, std::to_string(10)},
{InferenceEngine::MYRIAD_NUMBER_OF_CMX_SLICES, std::to_string(10)} };
InferenceEngine::IExecutableNetwork::Ptr importedNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->ImportNetwork(importedNetworkPtr, modelFilenameStream.str(), config, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork importedNetwork;
ASSERT_NO_THROW(importedNetwork = _vpuPluginPtr->ImportNetwork(modelFilenameStream.str(), config));
std::string content = redirectCoutStream.str();
for (auto &&elem : config) {
@ -184,10 +181,10 @@ TEST_F(myriadConfigsWithBlobImportTests_smoke, TryingToSetRuntimeOptionDoesNotPr
auto fnPtr = ngraph::builder::subgraph::makeSplitConvConcat();
ASSERT_NO_THROW(_cnnNetwork = CNNNetwork(fnPtr));
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, {}, &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork));
std::stringstream modelFilenameStream;
modelFilenameStream << "splitConvConcat" << ".blob";
ASSERT_EQ(StatusCode::OK, _exeNetwork->Export(modelFilenameStream.str(), &_resp)) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork.Export(modelFilenameStream.str()));
std::map<std::string, std::string> config = { {CONFIG_KEY(EXCLUSIVE_ASYNC_REQUESTS), CONFIG_VALUE(YES)},
{CONFIG_KEY(LOG_LEVEL), CONFIG_VALUE(LOG_INFO)},
@ -198,8 +195,8 @@ TEST_F(myriadConfigsWithBlobImportTests_smoke, TryingToSetRuntimeOptionDoesNotPr
config.insert({VPU_MYRIAD_CONFIG_KEY(PLATFORM), VPU_MYRIAD_CONFIG_VALUE(2480)});
}
InferenceEngine::IExecutableNetwork::Ptr importedNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->ImportNetwork(importedNetworkPtr, modelFilenameStream.str(), config, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork importedNetwork;
ASSERT_NO_THROW(importedNetwork = _vpuPluginPtr->ImportNetwork(modelFilenameStream.str(), config));
std::string content = redirectCoutStream.str();
for (auto &&elem : config) {
@ -220,62 +217,62 @@ TEST_F(myriadBlobExportAccuracyDifferentCountInAndOutTests_smoke, IsResultOfImpo
auto fnPtr = ngraph::builder::subgraph::makeSplitConvConcat();
ASSERT_NO_THROW(_cnnNetwork = CNNNetwork(fnPtr));
InferenceEngine::IExecutableNetwork::Ptr originalExeNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->LoadNetwork(originalExeNetworkPtr, _cnnNetwork, { }, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork originalExeNetwork;
ASSERT_NO_THROW(originalExeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork));
ConstInputsDataMap originalInputsInfo;
ASSERT_EQ(StatusCode::OK, originalExeNetworkPtr->GetInputsInfo(originalInputsInfo, &_resp)) << _resp.msg;
ASSERT_NO_THROW(originalInputsInfo = originalExeNetwork.GetInputsInfo());
InferenceEngine::IInferRequest::Ptr orignalInferRequest;
ASSERT_EQ(StatusCode::OK, originalExeNetworkPtr->CreateInferRequest(orignalInferRequest, &_resp)) << _resp.msg;
InferenceEngine::InferRequest orignalInferRequest;
ASSERT_NO_THROW(orignalInferRequest = originalExeNetwork.CreateInferRequest());
std::vector<Blob::Ptr> inputBlobs(originalInputsInfo.size());
auto inputBlobsIt = inputBlobs.begin();
for (const auto &inputInfo : originalInputsInfo) {
ASSERT_EQ(StatusCode::OK, orignalInferRequest->GetBlob(inputInfo.first.c_str(), *inputBlobsIt, &_resp)) << _resp.msg;
ASSERT_NO_THROW(*inputBlobsIt = orignalInferRequest.GetBlob(inputInfo.first.c_str()));
GenRandomData(*inputBlobsIt);
inputBlobsIt++;
}
ASSERT_EQ(StatusCode::OK, orignalInferRequest->Infer(&_resp)) << _resp.msg;
ASSERT_NO_THROW(orignalInferRequest.Infer());
ConstOutputsDataMap orignalOutputsInfo;
ASSERT_EQ(StatusCode::OK, originalExeNetworkPtr->GetOutputsInfo(orignalOutputsInfo, &_resp)) << _resp.msg;
ASSERT_NO_THROW(orignalOutputsInfo = originalExeNetwork.GetOutputsInfo());
std::vector<Blob::Ptr> originalOutputBlobs(orignalOutputsInfo.size());
auto outputBlobsIt = originalOutputBlobs.begin();
for (const auto &outputInfo: orignalOutputsInfo) {
ASSERT_EQ(StatusCode::OK, orignalInferRequest->GetBlob(outputInfo.first.c_str(), *outputBlobsIt, &_resp)) << _resp.msg;
ASSERT_NO_THROW(*outputBlobsIt = orignalInferRequest.GetBlob(outputInfo.first.c_str()));
outputBlobsIt++;
}
std::stringstream modelFilenameStream;
modelFilenameStream << "exportedModel" << ".blob";
ASSERT_EQ(StatusCode::OK, originalExeNetworkPtr->Export(modelFilenameStream.str(), &_resp)) << _resp.msg;
ASSERT_NO_THROW(originalExeNetwork.Export(modelFilenameStream.str()));
InferenceEngine::IExecutableNetwork::Ptr importedNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->ImportNetwork(importedNetworkPtr, modelFilenameStream.str(), {}, &_resp)) << _resp.msg;
InferenceEngine::IInferRequest::Ptr importedInferRequest;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->CreateInferRequest(importedInferRequest, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork importedNetwork;
ASSERT_NO_THROW(importedNetwork = _vpuPluginPtr->ImportNetwork(modelFilenameStream.str()));
InferenceEngine::InferRequest importedInferRequest;
ASSERT_NO_THROW(importedInferRequest = importedNetwork.CreateInferRequest());
ConstInputsDataMap importedInputsInfo;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->GetInputsInfo(importedInputsInfo, &_resp)) << _resp.msg;
ASSERT_NO_THROW(importedInputsInfo = importedNetwork.GetInputsInfo());
inputBlobsIt = inputBlobs.begin();
for (const auto &inputInfo : importedInputsInfo) {
ASSERT_EQ(StatusCode::OK, importedInferRequest->SetBlob(inputInfo.first.c_str(), *inputBlobsIt, &_resp)) << &_resp.msg;
ASSERT_NO_THROW(importedInferRequest.SetBlob(inputInfo.first.c_str(), *inputBlobsIt));
inputBlobsIt++;
}
ASSERT_EQ(StatusCode::OK, importedInferRequest->Infer(&_resp)) << _resp.msg;
ASSERT_NO_THROW(importedInferRequest.Infer());
ConstOutputsDataMap importedOutputsInfo;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->GetOutputsInfo(importedOutputsInfo, &_resp)) << _resp.msg;
ASSERT_NO_THROW(importedOutputsInfo = importedNetwork.GetOutputsInfo());
outputBlobsIt = originalOutputBlobs.begin();
for (const auto &outputInfo : importedOutputsInfo) {
Blob::Ptr importedOutputBlobPtr;
ASSERT_EQ(StatusCode::OK, importedInferRequest->GetBlob(outputInfo.first.c_str(), importedOutputBlobPtr, &_resp)) << _resp.msg;
ASSERT_NO_THROW(importedOutputBlobPtr = importedInferRequest.GetBlob(outputInfo.first.c_str()));
CompareCommonAbsolute(importedOutputBlobPtr, *outputBlobsIt, 0.f);
outputBlobsIt++;
@ -306,46 +303,46 @@ TEST_P(myriadBlobExportAccuracyDifferentPrecisionOfInAndOutTests_smoke, IsResult
auto outputInfo = outputsInfo.begin();
ASSERT_NO_THROW(outputInfo->second->setPrecision(outputPrecision));
InferenceEngine::IExecutableNetwork::Ptr originalExeNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->LoadNetwork(originalExeNetworkPtr, network, { }, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork originalExeNetwork;
ASSERT_NO_THROW(originalExeNetwork = _vpuPluginPtr->LoadNetwork(network));
InferenceEngine::IInferRequest::Ptr orignalInferRequest;
ASSERT_EQ(StatusCode::OK, originalExeNetworkPtr->CreateInferRequest(orignalInferRequest, &_resp)) << _resp.msg;
InferenceEngine::InferRequest orignalInferRequest;
ASSERT_NO_THROW(orignalInferRequest = originalExeNetwork.CreateInferRequest());
Blob::Ptr inputBlobPtr;
ASSERT_EQ(StatusCode::OK, orignalInferRequest->GetBlob(inputInfo->first.c_str(), inputBlobPtr, &_resp)) << _resp.msg;
ASSERT_NO_THROW(inputBlobPtr = orignalInferRequest.GetBlob(inputInfo->first.c_str()));
GenRandomData(inputBlobPtr);
ASSERT_EQ(StatusCode::OK, orignalInferRequest->Infer(&_resp)) << _resp.msg;
ASSERT_NO_THROW(orignalInferRequest.Infer());
Blob::Ptr outputBlobPtr;
ASSERT_EQ(StatusCode::OK, orignalInferRequest->GetBlob(outputInfo->first.c_str(), outputBlobPtr, &_resp)) << _resp.msg;
ASSERT_NO_THROW(outputBlobPtr = orignalInferRequest.GetBlob(outputInfo->first.c_str()));
std::stringstream modelFilenameStream;
modelFilenameStream << "exportedModel" << ".blob";
ASSERT_EQ(StatusCode::OK, originalExeNetworkPtr->Export(modelFilenameStream.str(), &_resp)) << _resp.msg;
ASSERT_NO_THROW(originalExeNetwork.Export(modelFilenameStream.str()));
InferenceEngine::IExecutableNetwork::Ptr importedNetworkPtr;
ASSERT_EQ(StatusCode::OK, _vpuPluginPtr->ImportNetwork(importedNetworkPtr, modelFilenameStream.str(), {}, &_resp)) << _resp.msg;
InferenceEngine::IInferRequest::Ptr importedInferRequest;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->CreateInferRequest(importedInferRequest, &_resp)) << _resp.msg;
InferenceEngine::ExecutableNetwork importedNetwork;
ASSERT_NO_THROW(importedNetwork = _vpuPluginPtr->ImportNetwork(modelFilenameStream.str()));
InferenceEngine::InferRequest importedInferRequest;
ASSERT_NO_THROW(importedInferRequest = importedNetwork.CreateInferRequest());
ConstInputsDataMap importedInputsInfo;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->GetInputsInfo(importedInputsInfo, &_resp)) << _resp.msg;
ASSERT_NO_THROW(importedInputsInfo = importedNetwork.GetInputsInfo());
ASSERT_EQ(importedInputsInfo.size(), 1);
auto importedInputInfo = importedInputsInfo.begin();
ASSERT_EQ(StatusCode::OK, importedInferRequest->SetBlob(importedInputInfo->first.c_str(), inputBlobPtr, &_resp)) << &_resp.msg;
ASSERT_NO_THROW(importedInferRequest.SetBlob(importedInputInfo->first.c_str(), inputBlobPtr));
ASSERT_EQ(StatusCode::OK, importedInferRequest->Infer(&_resp)) << _resp.msg;
ASSERT_NO_THROW(importedInferRequest.Infer());
ConstOutputsDataMap importedOutputsInfo;
ASSERT_EQ(StatusCode::OK, importedNetworkPtr->GetOutputsInfo(importedOutputsInfo, &_resp)) << _resp.msg;
ASSERT_NO_THROW(importedOutputsInfo = importedNetwork.GetOutputsInfo());
ASSERT_EQ(importedOutputsInfo.size(), 1);
auto importedOutputInfo = importedOutputsInfo.begin();
Blob::Ptr importedOutputBlobPtr;
ASSERT_EQ(StatusCode::OK, importedInferRequest->GetBlob(importedOutputInfo->first.c_str(), importedOutputBlobPtr, &_resp)) << _resp.msg;
ASSERT_NO_THROW(importedOutputBlobPtr = importedInferRequest.GetBlob(importedOutputInfo->first.c_str()));
CompareCommonAbsolute(importedOutputBlobPtr, outputBlobPtr, 0.f);
}
@ -396,6 +393,7 @@ TEST_F(myriadExtraTests_smoke, ThereIsNoSegfaultOnZeroConvolutionWeights) {
,{ "dilation-x", std::to_string(dilation_factor.x) }
,{ "dilation-y", std::to_string(dilation_factor.y) }
};
ASSERT_NO_FATAL_FAILURE(makeSingleLayerNetwork(LayerInitParams("Convolution")
.params(layer_params)
.weights(num_weights)

View File

@ -160,36 +160,26 @@ TEST_F(myriadLayersTestsConcat_smoke, ConcatAfterNormalize) {
outputsInfo["copy2"]->setLayout(Layout::NHWC);
// Load network
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, {}));
// Create InferRequest
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = _exeNetwork.CreateInferRequest());
// Generate input blob
InferenceEngine::Blob::Ptr inputBlob;
ASSERT_NO_THROW(st = inferRequest->GetBlob("input", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlob = inferRequest.GetBlob("input"));
GenRandomData(inputBlob);
// Get output blob
InferenceEngine::Blob::Ptr output;
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob("concat", output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(output = inferRequest.GetBlob("concat"));
// Get blobs which are input to Concat
InferenceEngine::Blob::Ptr norm1;
InferenceEngine::Blob::Ptr norm2;
ASSERT_NO_THROW(st = inferRequest->GetBlob("copy1", norm1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob("copy2", norm2, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::Blob::Ptr norm1, norm2;
ASSERT_NO_THROW(norm1 = inferRequest.GetBlob("copy1"));
ASSERT_NO_THROW(norm2 = inferRequest.GetBlob("copy2"));
InferenceEngine::BlobMap normMap;
normMap["normalize1"] = norm1;

View File

@ -266,28 +266,19 @@ protected:
// Infer
//
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr inputValuesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input", inputValuesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputValuesBlob = _inferRequest.GetBlob("input"));
void* inputValuesBlobDataPtr = inputValuesBlob->buffer();
std::memcpy(inputValuesBlobDataPtr, inputBlobDataPtr, inputNum * sizeof(ie_fp16));
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputValuesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("convolution", outputValuesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputValuesBlob = _inferRequest.GetBlob("convolution"));
//
// Check result

View File

@ -172,8 +172,6 @@ TEST_P(myriadConvolution1x1LayerTests_smoke, Convolution1x1) {
InferenceEngine::TBlob<uint8_t>::Ptr weights_ptr = InferenceEngine::TBlob<uint8_t>::Ptr(GenWeights(num_weights));
StatusCode st;
InferenceEngine::Core ie;
auto network = ie.ReadNetwork(model, weights_ptr);
@ -185,27 +183,22 @@ TEST_P(myriadConvolution1x1LayerTests_smoke, Convolution1x1) {
_outputsInfo["conv1x1"]->setPrecision(Precision::FP16);
_outputsInfo["conv1x1"]->setLayout(layout);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{{InferenceEngine::MYRIAD_CUSTOM_LAYERS, customConfig.custom_config},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, HWConfigValue}},
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, HWConfigValue}}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr data;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data", data, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data = _inferRequest.GetBlob("data"));
GenRandomData(data);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
// TODO: fix CVS-47174
if (0)
{
std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> perfMap;
_inferRequest->GetPerformanceCounts(perfMap, nullptr);
auto perfMap = _inferRequest.GetPerformanceCounts();
std::vector <std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo>> perfVec(perfMap.begin(), perfMap.end());
std::sort(perfVec.begin(), perfVec.end(),
[=](const std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo> &pair1,
@ -224,9 +217,9 @@ TEST_P(myriadConvolution1x1LayerTests_smoke, Convolution1x1) {
printf("[----------] input dim: [%d %d %d %d]; output dim: [%d %d %d %d].\n", IB, IC, IH, IW, OB, OC, OH, OW);
printf("[----------] isHardware: %s; isHWC: %d.\n", HWConfigValue.c_str(), isHWC);
}
Blob::Ptr outputBlob;
ASSERT_NO_THROW(_inferRequest->GetBlob("conv1x1", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("conv1x1"));
_refBlob = make_shared_blob<ie_fp16>(TensorDesc(Precision::FP16, outputBlob->getTensorDesc().getDims(), NCHW));
_refBlob->allocate();

View File

@ -190,8 +190,6 @@ TEST_P(myriadConvolution3x3LayerTests_smoke, Convolution3x3) {
InferenceEngine::Core ie;
auto network = ie.ReadNetwork(model, weights_ptr);
StatusCode st;
_inputsInfo = network.getInputsInfo();
_inputsInfo["data"]->setPrecision(Precision::FP16);
_inputsInfo["data"]->setLayout(NCHW);
@ -200,19 +198,14 @@ TEST_P(myriadConvolution3x3LayerTests_smoke, Convolution3x3) {
_outputsInfo["conv3x3"]->setPrecision(Precision::FP16);
_outputsInfo["conv3x3"]->setLayout(NCHW);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{{InferenceEngine::MYRIAD_CUSTOM_LAYERS, customConfig.custom_config},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, HWConfigValue}},
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, HWConfigValue}}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr data;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data", data, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data = _inferRequest.GetBlob("data"));
GenRandomData(data);
//padding with zeros 1 row(top/bottom), 1 column(left/right) input tensor
@ -233,11 +226,12 @@ TEST_P(myriadConvolution3x3LayerTests_smoke, Convolution3x3) {
}
}
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
// TODO: fix CVS-47174
if (0)
{
std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> perfMap;
_inferRequest->GetPerformanceCounts(perfMap, nullptr);
auto perfMap = _inferRequest.GetPerformanceCounts();
std::vector <std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo>> perfVec(perfMap.begin(), perfMap.end());
std::sort(perfVec.begin(), perfVec.end(),
[=](const std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo> &pair1,
@ -258,8 +252,7 @@ TEST_P(myriadConvolution3x3LayerTests_smoke, Convolution3x3) {
}
Blob::Ptr outputBlob;
ASSERT_NO_THROW(_inferRequest->GetBlob("conv3x3", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("conv3x3"));
_refBlob = make_shared_blob<ie_fp16>(TensorDesc(Precision::FP16, outputBlob->getTensorDesc().getDims(), NCHW));
_refBlob->allocate();

View File

@ -704,8 +704,6 @@ TEST_F(myriadLayersTests_nightly, DISABLED_tests125) {
InferenceEngine::TBlob<uint8_t>::Ptr weights(GenWeights(1697280 / sizeof(ie_fp16)));
constWeightsRange(weights->data().as<uint16_t *>(), 1697280 / sizeof(ie_fp16));
StatusCode st;
InferenceEngine::Core ie;
auto network = ie.ReadNetwork(MODEL_RFCNN, weights);
@ -716,26 +714,21 @@ TEST_F(myriadLayersTests_nightly, DISABLED_tests125) {
outputsInfo[outName1]->setPrecision(Precision::FP16);
outputsInfo[outName2]->setPrecision(Precision::FP16);
InferenceEngine::IExecutableNetwork::Ptr exeNetwork;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::ExecutableNetwork exeNetwork;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network));
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
Blob::Ptr input;
ASSERT_NO_THROW(st = inferRequest->GetBlob("input", input, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input = inferRequest.GetBlob("input"));
genTestData(input);
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
Blob::Ptr out1;
Blob::Ptr out2;
ASSERT_NO_THROW(st = inferRequest->GetBlob(outName1.c_str(), out1, &_resp));
ASSERT_NO_THROW(st = inferRequest->GetBlob(outName2.c_str(), out2, &_resp));
Blob::Ptr out1, out2;
ASSERT_NO_THROW(out1 = inferRequest.GetBlob(outName1.c_str()));
ASSERT_NO_THROW(out2 = inferRequest.GetBlob(outName2.c_str()));
};
// This tests checks that conv3x3s1 case doesn't corrupt its input.
@ -874,8 +867,6 @@ TEST_F(myriadLayersTests_nightly, SmallConv_CorruptInputBug) {
const ie_fp16 *weights = weightsBlob->readOnly().as<const ie_fp16 *>();
const ie_fp16 *bias = weights + num_weights;
StatusCode st;
ASSERT_NO_THROW(readNetwork(model, weightsBlob));
const auto& network = _cnnNetwork;
@ -887,15 +878,12 @@ TEST_F(myriadLayersTests_nightly, SmallConv_CorruptInputBug) {
_outputsInfo["conv1_out"]->setPrecision(Precision::FP16);
_outputsInfo["conv2_out"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr input;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input", input, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input = _inferRequest.GetBlob("input"));
{
ie_fp16 *dst = input->buffer().as<ie_fp16 *>();
for (int i = 0; i < input->size(); ++i) {
@ -904,16 +892,13 @@ TEST_F(myriadLayersTests_nightly, SmallConv_CorruptInputBug) {
}
}
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr conv1;
ASSERT_NO_THROW(_inferRequest->GetBlob("conv1_out", conv1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(conv1 = _inferRequest.GetBlob("conv1_out"));
Blob::Ptr conv2;
ASSERT_NO_THROW(_inferRequest->GetBlob("conv2_out", conv2, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(conv2 = _inferRequest.GetBlob("conv2_out"));
{
SCOPED_TRACE("CompareCommonAbsolute with itself");

View File

@ -909,8 +909,6 @@ TEST_P(myriadLayersTestsQuantizeBinarize_smoke, Quantize_Binarization) {
model.replace( model.find("@output_low_size@"), sizeof("@output_low_size@") -1, std::to_string(output_low_size));
model.replace( model.find("@output_high_size@"), sizeof("@output_high_size@") -1, std::to_string(output_high_size));
StatusCode st;
InferenceEngine::Core ie;
auto network = ie.ReadNetwork(model, InferenceEngine::Blob::CPtr());
@ -931,33 +929,25 @@ TEST_P(myriadLayersTestsQuantizeBinarize_smoke, Quantize_Binarization) {
_inputsInfo["output_high"]->setLayout(NCHW);
_outputsInfo["Quantize"]->setLayout(NCHW);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
{{InferenceEngine::MYRIAD_CUSTOM_LAYERS, customConfig }}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{{InferenceEngine::MYRIAD_CUSTOM_LAYERS, customConfig }}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr data;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data", data, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data = _inferRequest.GetBlob("data"));
GenRandomData(data);
Blob::Ptr input_low;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input_low", input_low, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input_low = _inferRequest.GetBlob("input_low"));
GenRandomData(input_low);
Blob::Ptr input_high;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input_high", input_high, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input_high = _inferRequest.GetBlob("input_high"));
Blob::Ptr output_low;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("output_low", output_low, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(output_low = _inferRequest.GetBlob("output_low"));
Blob::Ptr output_high;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("output_high", output_high, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(output_high = _inferRequest.GetBlob("output_high"));
if (levels == 2) {
memcpy((uint8_t*)input_high->buffer(), (uint8_t*)input_low->buffer(), input_high->byteSize());
@ -965,19 +955,18 @@ TEST_P(myriadLayersTestsQuantizeBinarize_smoke, Quantize_Binarization) {
*((ie_fp16*)output_low->buffer() + i) = switch_out ? PrecisionUtils::f32tof16(1.0f) : PrecisionUtils::f32tof16(-1.0f);
*((ie_fp16*)output_high->buffer() + i) = switch_out ? PrecisionUtils::f32tof16(-1.0f) : PrecisionUtils::f32tof16(1.0f);
}
}
else{
} else {
GenRandomData(input_high);
GenRandomData(output_low);
GenRandomData(output_high);
}
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
// TODO: fix CVS-47174
if (0)
{
std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> perfMap;
_inferRequest->GetPerformanceCounts(perfMap, nullptr);
auto perfMap = _inferRequest.GetPerformanceCounts();
std::vector <std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo>> perfVec(perfMap.begin(), perfMap.end());
std::sort(perfVec.begin(), perfVec.end(),
[=](const std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo> &pair1,
@ -996,8 +985,7 @@ TEST_P(myriadLayersTestsQuantizeBinarize_smoke, Quantize_Binarization) {
}
Blob::Ptr outputBlob;
ASSERT_NO_THROW(_inferRequest->GetBlob("Quantize", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("Quantize"));
_refBlob = make_shared_blob<ie_fp16>(TensorDesc(Precision::FP16, outputBlob->getTensorDesc().getDims(), NCHW));
_refBlob->allocate();

View File

@ -863,8 +863,6 @@ public:
gen_confidence[i] = static_cast<float>(std::rand()) / RAND_MAX;
}
StatusCode st;
InferenceEngine::Core ie;
auto network = ie.ReadNetwork(PRIOR_BOX_CLUSTERED_MODEL, InferenceEngine::Blob::CPtr());
@ -877,20 +875,13 @@ public:
outputsInfo["data2_copy"]->setPrecision(Precision::FP16);
outputsInfo["priorboxclustered_copy"]->setPrecision(Precision::FP16);
IExecutableNetwork::Ptr exeNetwork;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(exeNetwork, nullptr) << _resp.msg;
ExecutableNetwork exeNetwork;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network));
IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest->GetBlob("priorboxclustered_copy", priorOutput, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(priorOutput = inferRequest.GetBlob("priorboxclustered_copy"));
}
TBlob<float>::Ptr refOutput;
@ -999,8 +990,6 @@ TEST_F(myriadDetectionOutputTests_smoke, NoConst) {
ASSERT_NO_FATAL_FAILURE(PrepareInput());
ASSERT_NO_FATAL_FAILURE(CalcRefOutput(false));
StatusCode st;
InferenceEngine::Core ie;
auto network = ie.ReadNetwork(DETECTION_OUTPUT_MODEL, InferenceEngine::Blob::CPtr());
@ -1015,18 +1004,14 @@ TEST_F(myriadDetectionOutputTests_smoke, NoConst) {
outputsInfo["data2_copy"]->setPrecision(Precision::FP16);
outputsInfo["detection_out"]->setPrecision(Precision::FP16);
IExecutableNetwork::Ptr exeNetwork;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(exeNetwork, nullptr) << _resp.msg;
ExecutableNetwork exeNetwork;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network));
IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
Blob::Ptr locations;
ASSERT_NO_THROW(st = inferRequest->GetBlob("locations", locations, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(locations = inferRequest.GetBlob("locations"));
{
ie_fp16 *dst = locations->buffer().as<ie_fp16 *>();
for (int i = 0; i < NUM_LOC; ++i) {
@ -1035,8 +1020,7 @@ TEST_F(myriadDetectionOutputTests_smoke, NoConst) {
}
Blob::Ptr confidence;
ASSERT_NO_THROW(st = inferRequest->GetBlob("confidence", confidence, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(confidence = inferRequest.GetBlob("confidence"));
{
ie_fp16 *dst = confidence->buffer().as<ie_fp16 *>();
for (int i = 0; i < NUM_CONF; ++i) {
@ -1044,11 +1028,8 @@ TEST_F(myriadDetectionOutputTests_smoke, NoConst) {
}
}
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest->GetBlob("detection_out", myriadOutput, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(myriadOutput = inferRequest.GetBlob("detection_out"));
CheckResults();
}
@ -1057,8 +1038,6 @@ TEST_F(myriadDetectionOutputTests_smoke, MxNet) {
ASSERT_NO_FATAL_FAILURE(PrepareInput());
ASSERT_NO_FATAL_FAILURE(CalcRefOutput(true));
StatusCode st;
TBlob<uint8_t>::Ptr weights(new TBlob<uint8_t>({Precision::U8, {priorOutput->byteSize()}, Layout::C}, priorOutput->buffer().as<uint8_t *>()));
InferenceEngine::Core ie;
@ -1071,18 +1050,14 @@ TEST_F(myriadDetectionOutputTests_smoke, MxNet) {
auto outputsInfo = network.getOutputsInfo();
outputsInfo["detection_out"]->setPrecision(Precision::FP16);
IExecutableNetwork::Ptr exeNetwork;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(exeNetwork, nullptr) << _resp.msg;
ExecutableNetwork exeNetwork;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network));
IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
Blob::Ptr locations;
ASSERT_NO_THROW(st = inferRequest->GetBlob("locations", locations, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(locations = inferRequest.GetBlob("locations"));
{
ie_fp16 *dst = locations->buffer().as<ie_fp16 *>();
for (int i = 0; i < NUM_LOC; ++i) {
@ -1091,8 +1066,7 @@ TEST_F(myriadDetectionOutputTests_smoke, MxNet) {
}
Blob::Ptr confidence;
ASSERT_NO_THROW(st = inferRequest->GetBlob("confidence", confidence, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(confidence = inferRequest.GetBlob("confidence"));
{
ie_fp16 *dst = confidence->buffer().as<ie_fp16 *>();
for (int i = 0; i < NUM_CONF; ++i) {
@ -1100,11 +1074,8 @@ TEST_F(myriadDetectionOutputTests_smoke, MxNet) {
}
}
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest->GetBlob("detection_out", myriadOutput, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(myriadOutput = inferRequest.GetBlob("detection_out"));
CheckResults();
}
@ -1113,8 +1084,6 @@ TEST_F(myriadDetectionOutputTests_smoke, WithConst) {
ASSERT_NO_FATAL_FAILURE(PrepareInput());
ASSERT_NO_FATAL_FAILURE(CalcRefOutput(false));
StatusCode st;
TBlob<uint8_t>::Ptr weights(new TBlob<uint8_t>({Precision::U8, {priorOutput->byteSize()}, Layout::C}, priorOutput->buffer().as<uint8_t *>()));
InferenceEngine::Core ie;
@ -1127,18 +1096,14 @@ TEST_F(myriadDetectionOutputTests_smoke, WithConst) {
auto outputsInfo = network.getOutputsInfo();
outputsInfo["detection_out"]->setPrecision(Precision::FP16);
IExecutableNetwork::Ptr exeNetwork;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(exeNetwork, nullptr) << _resp.msg;
ExecutableNetwork exeNetwork;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network));
IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
Blob::Ptr locations;
ASSERT_NO_THROW(st = inferRequest->GetBlob("locations", locations, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(locations = inferRequest.GetBlob("locations"));
{
ie_fp16 *dst = locations->buffer().as<ie_fp16 *>();
for (int i = 0; i < NUM_LOC; ++i) {
@ -1147,8 +1112,7 @@ TEST_F(myriadDetectionOutputTests_smoke, WithConst) {
}
Blob::Ptr confidence;
ASSERT_NO_THROW(st = inferRequest->GetBlob("confidence", confidence, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(confidence = inferRequest.GetBlob("confidence"));
{
ie_fp16 *dst = confidence->buffer().as<ie_fp16 *>();
for (int i = 0; i < NUM_CONF; ++i) {
@ -1156,11 +1120,8 @@ TEST_F(myriadDetectionOutputTests_smoke, WithConst) {
}
}
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest->GetBlob("detection_out", myriadOutput, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(myriadOutput = inferRequest.GetBlob("detection_out"));
CheckResults();
}

View File

@ -173,7 +173,6 @@ INSTANTIATE_TEST_CASE_P(accuracy, myriadTestsEltwiseMean_smoke,
);
TEST_F(myriadLayersTestsEltwiseBase, EltwiseWithSameInputs) {
StatusCode st;
const std::string model = R"V0G0N(
<net batch="1" name="VNect: Test" version="2">
@ -253,28 +252,20 @@ TEST_F(myriadLayersTestsEltwiseBase, EltwiseWithSameInputs) {
networkOutputs.begin()->second->setPrecision(InferenceEngine::Precision::FP16);
InferenceEngine::Blob::Ptr inputBlob;
InferenceEngine::ExecutableNetwork exeNetwork;
InferenceEngine::IExecutableNetwork::Ptr exeNetwork;
std::map<std::string, std::string> networkConfig = {{InferenceEngine::MYRIAD_PERF_REPORT_MODE, InferenceEngine::MYRIAD_PER_STAGE}};
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network, networkConfig, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network, networkConfig));
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(inputBlob = inferRequest.GetBlob(networkInputs.begin()->first.c_str()));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob(networkInputs.begin()->first.c_str(), inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
GenRandomData(inputBlob);
InferenceEngine::Blob::Ptr output;
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob(networkOutputs.begin()->first.c_str(), output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(output = inferRequest.GetBlob(networkOutputs.begin()->first.c_str()));
_refBlob = make_shared_blob<ie_fp16>({Precision::FP16, output->getTensorDesc().getDims(), output->getTensorDesc().getLayout()});
_refBlob->allocate();
@ -490,24 +481,16 @@ TEST_F(myriadLayersTests_nightly, MergeEltwiseWithReLU) {
auto outputInfo = _outputsInfo["last"];
outputInfo->setPrecision(Precision::FP16);
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{ {InferenceEngine::MYRIAD_PERF_REPORT_MODE, InferenceEngine::MYRIAD_PER_STAGE},
{CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES)},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} },
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} }));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(_inferRequest.Infer());
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
auto sumAndReLULayerIt = perfMap.find("sum + sum_relu");
ASSERT_TRUE(sumAndReLULayerIt != perfMap.end());
@ -722,24 +705,16 @@ TEST_F(myriadLayersTests_nightly, MergeEltwiseWithLeakyReLU) {
auto outputInfo = _outputsInfo["last"];
outputInfo->setPrecision(Precision::FP16);
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{ {InferenceEngine::MYRIAD_PERF_REPORT_MODE, InferenceEngine::MYRIAD_PER_STAGE},
{CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES)},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} },
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} }));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(_inferRequest.Infer());
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
auto sumAndReLULayerIt = perfMap.find("sum + sum_leaky_relu");
ASSERT_TRUE(sumAndReLULayerIt != perfMap.end());
@ -954,25 +929,17 @@ TEST_F(myriadLayersTests_nightly, MergeEltwiseWithClamp) {
auto outputInfo = _outputsInfo["last"];
outputInfo->setPrecision(Precision::FP16);
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(
_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(
network,
{ {InferenceEngine::MYRIAD_PERF_REPORT_MODE, InferenceEngine::MYRIAD_PER_STAGE},
{CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES)},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} },
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} }));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(_inferRequest.Infer());
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
auto sumAndReLULayerIt = perfMap.find("sum + sum_clamp");
ASSERT_TRUE(sumAndReLULayerIt != perfMap.end());

View File

@ -186,51 +186,37 @@ protected:
_outputsInfo["expDetectionOutput.2"]->setPrecision(dataPrecision);
_outputsInfo["expDetectionOutput.2"]->setLayout(defaultLayout(blobDims[OutputScores].size()));
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr inputBoxesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("detectionOutput_inputBoxes", inputBoxesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBoxesBlob = _inferRequest.GetBlob("detectionOutput_inputBoxes"));
Blob::Ptr inputDeltasBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("detectionOutput_inputDeltas", inputDeltasBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputDeltasBlob = _inferRequest.GetBlob("detectionOutput_inputDeltas"));
Blob::Ptr inputScoresBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("detectionOutput_inputScores", inputScoresBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputScoresBlob = _inferRequest.GetBlob("detectionOutput_inputScores"));
Blob::Ptr inputIMinfoBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("detectionOutput_inputIMinfo", inputIMinfoBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputIMinfoBlob = _inferRequest.GetBlob("detectionOutput_inputIMinfo"));
generateData(inputBoxesBlob, inputDeltasBlob, inputScoresBlob, inputIMinfoBlob, sizeParams, layerParams);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputBoxesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("expDetectionOutput.0", outputBoxesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBoxesBlob = _inferRequest.GetBlob("expDetectionOutput.0"));
Blob::Ptr refBoxesBlob = make_shared_blob<ie_fp16>(outputBoxesBlob->getTensorDesc());
refBoxesBlob->allocate();
Blob::Ptr outputClassesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("expDetectionOutput.1", outputClassesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputClassesBlob = _inferRequest.GetBlob("expDetectionOutput.1"));
Blob::Ptr refClassesBlob = make_shared_blob<int32_t>(outputClassesBlob->getTensorDesc());
refClassesBlob->allocate();
Blob::Ptr outputScoresBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("expDetectionOutput.2", outputScoresBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputScoresBlob = _inferRequest.GetBlob("expDetectionOutput.2"));
Blob::Ptr refScoresBlob = make_shared_blob<ie_fp16>(outputScoresBlob->getTensorDesc());
refScoresBlob->allocate();
@ -242,6 +228,7 @@ protected:
CompareCommonExact(refClassesBlob, outputClassesBlob);
CompareCommonAbsolute(refScoresBlob, outputScoresBlob, 0.0f);
}
static std::string getModel(const BlobDimsList& blobDims, const ExpDetectionOutputParams& layerParams)
{
std::string model = R"V0G0N(
@ -318,6 +305,7 @@ protected:
return model;
}
static std::string layerParamsToString(const ExpDetectionOutputParams& layerParams)
{
std::string str;
@ -341,6 +329,7 @@ protected:
return str;
}
static std::string dimsToString(const SizeVector& dims)
{
std::string str;
@ -348,6 +337,7 @@ protected:
str += "<dim>" + std::to_string(d) + "</dim>";
return str;
}
static BlobDimsList calcBlobDims(const SizeParams& sizeParams)
{
const size_t numRois = sizeParams.numRois;
@ -367,6 +357,7 @@ protected:
return list;
}
static Layout defaultLayout(int ndims)
{
switch (ndims)

View File

@ -50,25 +50,19 @@ TEST_F(myriadLayersTests_nightly, LSTMCellSequenceNet) {
(++++networkInputsFull.begin())->second->setPrecision(InferenceEngine::Precision::FP16);
networkOutputsFull.begin()->second->setPrecision(InferenceEngine::Precision::FP16);
InferenceEngine::IExecutableNetwork::Ptr exeNetworkFull;
InferenceEngine::ExecutableNetwork exeNetworkFull;
std::map<std::string, std::string> networkConfig;
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetworkFull, full_network, networkConfig, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetworkFull->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(exeNetworkFull = _vpuPluginPtr->LoadNetwork(full_network, networkConfig));
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetworkFull.CreateInferRequest());
InferenceEngine::Blob::Ptr inputBlob;
ASSERT_NO_THROW(st = inferRequest->GetBlob("RNNInput", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlob = inferRequest.GetBlob("RNNInput"));
InferenceEngine::Blob::Ptr inputBlobHidden;
ASSERT_NO_THROW(st = inferRequest->GetBlob("RNNInput_Hidden", inputBlobHidden, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlobHidden = inferRequest.GetBlob("RNNInput_Hidden"));
InferenceEngine::Blob::Ptr inputBlobCellState;
ASSERT_NO_THROW(st = inferRequest->GetBlob("RNNInput_CellState", inputBlobCellState, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlobCellState = inferRequest.GetBlob("RNNInput_CellState"));
/* input tensors generating */
ie_fp16 *src_data_cell_state = static_cast<ie_fp16*>(inputBlobCellState->buffer());
@ -156,18 +150,14 @@ TEST_F(myriadLayersTests_nightly, LSTMCellSequenceNet) {
}
}
ASSERT_NO_THROW(st = inferRequest->SetBlob("RNNInput_Hidden", inputBlobHidden, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->SetBlob("RNNInput_CellState", inputBlobCellState, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->SetBlob("RNNInput", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.SetBlob("RNNInput_Hidden", inputBlobHidden));
ASSERT_NO_THROW(inferRequest.SetBlob("RNNInput_CellState", inputBlobCellState));
ASSERT_NO_THROW(inferRequest.SetBlob("RNNInput", inputBlob));
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_NO_THROW(inferRequest.Infer());
InferenceEngine::Blob::Ptr output;
ASSERT_NO_THROW(st = inferRequest->GetBlob("RNNOutput", output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(output = inferRequest.GetBlob("RNNOutput"));
CompareCommonAbsolute(output, refOut0, ERROR_BOUND);
}

View File

@ -54,8 +54,6 @@ TEST_F(myriadLayersTests_nightly, MVN_CHW_Input)
</net>
)V0G0N";
StatusCode st;
ASSERT_NO_THROW(readNetwork(model));
const auto& network = _cnnNetwork;
@ -66,13 +64,10 @@ TEST_F(myriadLayersTests_nightly, MVN_CHW_Input)
_outputsInfo = network.getOutputsInfo();
_outputsInfo["mvn"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
{{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(YES)}}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(YES)}}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
auto tensorDesc = TensorDesc(Precision::FP16, _inputsInfo["data"]->getTensorDesc().getDims(), Layout::NCHW);
auto inputNCHW = make_shared_blob<ie_fp16>(tensorDesc);
@ -86,14 +81,9 @@ TEST_F(myriadLayersTests_nightly, MVN_CHW_Input)
ASSERT_NO_THROW(GenRandomData(inputNCHW));
ASSERT_NO_THROW(st = _inferRequest->SetBlob("data", inputNCHW, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->SetBlob("mvn", outputNCHW, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.SetBlob("data", inputNCHW));
ASSERT_NO_THROW(_inferRequest.SetBlob("mvn", outputNCHW));
ASSERT_NO_THROW(_inferRequest.Infer());
ASSERT_NO_FATAL_FAILURE(refMVN(inputNCHW, output_ref, 1, 1, 9.999999717180685e-10, true));

View File

@ -220,28 +220,19 @@ protected:
// Infer
//
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr inputValuesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input", inputValuesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputValuesBlob = _inferRequest.GetBlob("input"));
void* inputValuesBlobDataPtr = inputValuesBlob->buffer();
std::memcpy(inputValuesBlobDataPtr, inputBlobDataPtr, inputNum * sizeof(ie_fp16));
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputValuesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("pooling", outputValuesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputValuesBlob = _inferRequest.GetBlob("pooling"));
//
// Check result

View File

@ -211,8 +211,6 @@ TEST_F(myriadLayersTests_nightly, PriorBoxClustered) {
SetSeed(DEFAULT_SEED_VALUE + 6);
PriorBoxClusteredParams params;
StatusCode st;
ASSERT_NO_THROW(readNetwork(model));
const auto& network = _cnnNetwork;
@ -226,30 +224,23 @@ TEST_F(myriadLayersTests_nightly, PriorBoxClustered) {
_outputsInfo["data2_copy"]->setPrecision(Precision::FP16);
_outputsInfo["priorboxclustered_copy"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, {}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr data1;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data1", data1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data1 = _inferRequest.GetBlob("data1"));
Blob::Ptr data2;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data2", data2, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data2 = _inferRequest.GetBlob("data2"));
GenRandomData(data1);
GenRandomData(data2);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputBlob;
ASSERT_NO_THROW(_inferRequest->GetBlob("priorboxclustered_copy", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("priorboxclustered_copy"));
_refBlob = make_shared_blob<ie_fp16>({Precision::FP16, outputBlob->getTensorDesc().getDims(), ANY});
_refBlob->allocate();

View File

@ -289,8 +289,6 @@ public:
const PriorBoxParams& params, Precision outPrec = Precision::FP16) {
SetSeed(DEFAULT_SEED_VALUE + 5);
StatusCode st;
ASSERT_NO_THROW(readNetwork(model));
const auto& network = _cnnNetwork;
@ -304,30 +302,22 @@ public:
_outputsInfo["data2_copy"]->setPrecision(Precision::FP16);
_outputsInfo[outputName]->setPrecision(outPrec);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr data1;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data1", data1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data1 = _inferRequest.GetBlob("data1"));
Blob::Ptr data2;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data2", data2, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data2 = _inferRequest.GetBlob("data2"));
GenRandomData(data1);
GenRandomData(data2);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputBlob;
ASSERT_NO_THROW(_inferRequest->GetBlob(outputName.c_str(), outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob(outputName.c_str()));
_refBlob = make_shared_blob<ie_fp16>(TensorDesc(Precision::FP16, outputBlob->getTensorDesc().getDims(), ANY));
_refBlob->allocate();
@ -1296,8 +1286,6 @@ TEST_F(myriadLayersTests_nightly, PriorBox_WithConcat)
</net>
)V0G0N";
StatusCode st;
ASSERT_NO_THROW(readNetwork(model));
const auto& network = _cnnNetwork;
@ -1321,23 +1309,18 @@ TEST_F(myriadLayersTests_nightly, PriorBox_WithConcat)
_outputsInfo["conv9_2_copy"]->setPrecision(Precision::FP16);
_outputsInfo["mbox_priorbox_copy"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, {}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
// TODO: uncomment this code when GraphTransformer will be updated
// to optimize out extra copies in case of PriorBox+Concat pair.
#if 0
{
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
int count = 0;
for (auto p : perfMap) {
@ -1353,8 +1336,7 @@ TEST_F(myriadLayersTests_nightly, PriorBox_WithConcat)
#endif
Blob::Ptr outputBlob;
ASSERT_NO_THROW(_inferRequest->GetBlob("mbox_priorbox_copy", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("mbox_priorbox_copy"));
auto conv4_3_norm_mbox_priorbox = make_shared_blob<ie_fp16>(TensorDesc(Precision::FP16, {1, 2, 23104}, Layout::ANY));
{
@ -1836,8 +1818,6 @@ TEST_F(myriadLayersPriorBoxTests_smoke, TwoPriorBoxLayersWithUnusedInput)
SetSeed(DEFAULT_SEED_VALUE + 5);
StatusCode st;
ASSERT_NO_THROW(readNetwork(model));
const auto& network = _cnnNetwork;
@ -1852,33 +1832,25 @@ TEST_F(myriadLayersPriorBoxTests_smoke, TwoPriorBoxLayersWithUnusedInput)
_outputsInfo["priorbox1"]->setPrecision(Precision::FP16);
_outputsInfo["priorbox2"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, {}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr data1;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data1", data1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data1 = _inferRequest.GetBlob("data1"));
Blob::Ptr data2;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("data2", data2, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data2 = _inferRequest.GetBlob("data2"));
GenRandomData(data1);
GenRandomData(data2);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputBlob1;
Blob::Ptr outputBlob2;
ASSERT_NO_THROW(_inferRequest->GetBlob("priorbox1", outputBlob1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest->GetBlob("priorbox2", outputBlob2, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob1 = _inferRequest.GetBlob("priorbox1"));
ASSERT_NO_THROW(outputBlob2 = _inferRequest.GetBlob("priorbox2"));
_refBlob = make_shared_blob<ie_fp16>(TensorDesc(Precision::FP16, outputBlob1->getTensorDesc().getDims(), ANY));
_refBlob->allocate();

View File

@ -37,8 +37,6 @@ protected:
void InferProposalLayer() {
SetSeed(DEFAULT_SEED_VALUE + 13);
StatusCode st;
REPLACE_WITH_STR(model, "__PRECISION__", precision.name());
REPLACE_WITH_STR(model, "__CLIP_BEFORE_NMS__", clip_before_nms);
@ -60,24 +58,17 @@ protected:
_outputsInfo["proposal"]->setPrecision(precision);
_outputsInfo["proposal"]->setLayout(NC);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, {}));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr rpn_cls_prob_reshape;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("rpn_cls_prob_reshape", rpn_cls_prob_reshape, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(rpn_cls_prob_reshape = _inferRequest.GetBlob("rpn_cls_prob_reshape"));
Blob::Ptr rpn_bbox_pred;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("rpn_bbox_pred", rpn_bbox_pred, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(rpn_bbox_pred = _inferRequest.GetBlob("rpn_bbox_pred"));
Blob::Ptr img_info;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("im_info", img_info, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(img_info = _inferRequest.GetBlob("im_info"));
// for rpn_cls_prob_reshape
std::string inputTensor1Binary = TestDataHelpers::get_data_path() + cls_prob_file;
@ -101,11 +92,8 @@ protected:
}
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest->GetBlob("proposal", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("proposal"));
}
void compareOutputSampleToRef(std::vector<float> & gt_values, const float error_threshold) {

View File

@ -149,12 +149,8 @@ public:
outputInfo.second->setLayout(NCHW);
}
InferenceEngine::StatusCode st = InferenceEngine::StatusCode::GENERAL_ERROR;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, {}, &_resp));
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork->CreateInferRequest(_inferRequest, &_resp)) << _resp.msg;
ASSERT_EQ((int)InferenceEngine::StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_inferRequest, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(_inputsInfo = _cnnNetwork.getInputsInfo());
ASSERT_NO_THROW(_outputsInfo = _cnnNetwork.getOutputsInfo());
@ -166,23 +162,18 @@ public:
InferenceEngine::Layout layout = inputInfo.second->getTensorDesc().getLayout();
Blob::Ptr data;
ASSERT_NO_THROW(st = _inferRequest->GetBlob(inputInfo.first.c_str(), data, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data = _inferRequest.GetBlob(inputInfo.first.c_str()));
if (inputInfo.first == _inputsInfo.begin()->first)
{
GenRandomData(data);
}
else
{
genROIs(data, params, num_rois);
}
_inputMap[inputInfo.first] = data;
}
Blob::Ptr data;
ASSERT_NO_THROW(st = _inferRequest->GetBlob(_outputsInfo.begin()->first.c_str(), data, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data = _inferRequest.GetBlob(_outputsInfo.begin()->first.c_str()));
_outputMap[_outputsInfo.begin()->first] = data;
}

View File

@ -416,22 +416,15 @@ protected:
_outputsInfo = network.getOutputsInfo();
_outputsInfo["reduce"]->setPrecision(dataPrecision);
_outputsInfo["reduce"]->setLayout(vpu::deviceLayout(TensorDesc::getLayoutByDims(outputDims), layoutPreference));
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr inputBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("reduce_input", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlob = _inferRequest.GetBlob("reduce_input"));
Blob::Ptr outputBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("reduce", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("reduce"));
Blob::Ptr refBlob = nullptr;
float compareThreshold = 0.0f;
@ -443,8 +436,7 @@ protected:
auto generateData = opIt->second.generateData;
generateData(inputBlob);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
refBlob = make_shared_blob<ie_fp16>(outputBlob->getTensorDesc());
refBlob->allocate();
@ -457,8 +449,7 @@ protected:
auto generateData = opIt->second.generateData;
generateData(inputBlob);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
refBlob = make_shared_blob<int32_t>(outputBlob->getTensorDesc());
refBlob->allocate();
@ -468,25 +459,11 @@ protected:
}
};
class myriadTestsReduceAnd_smoke: public ReduceTest<REDUCE_AND>
{
};
class myriadTestsReduceMin_smoke: public ReduceTest<REDUCE_MIN>
{
};
class myriadTestsReduceMax_smoke: public ReduceTest<REDUCE_MAX>
{
};
class myriadTestsReduceSum_smoke: public ReduceTest<REDUCE_SUM>
{
};
class myriadTestsReduceMean_smoke: public ReduceTest<REDUCE_MEAN>
{
};
using myriadTestsReduceAnd_smoke = ReduceTest<REDUCE_AND>;
using myriadTestsReduceMin_smoke = ReduceTest<REDUCE_MIN>;
using myriadTestsReduceMax_smoke = ReduceTest<REDUCE_MAX>;
using myriadTestsReduceSum_smoke = ReduceTest<REDUCE_SUM>;
using myriadTestsReduceMean_smoke = ReduceTest<REDUCE_MEAN>;
// Tests are disabled due to hang: #-28315

View File

@ -162,7 +162,6 @@ TEST_F(myriadLayersTests_nightly, graphTransformerNotThrowExceptionIfConvOutputI
)V0G0N";
TBlob<uint8_t>::Ptr weightsBlob(GenWeights(120));
StatusCode st;
ASSERT_NO_THROW(readNetwork(model, weightsBlob));
@ -175,8 +174,7 @@ TEST_F(myriadLayersTests_nightly, graphTransformerNotThrowExceptionIfConvOutputI
_outputsInfo["conv1/relu"]->setPrecision(Precision::FP16);
_outputsInfo["deconv"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, {}));
}
TEST_F(myriadLayersTests_nightly, ReLU_PostOp_Conflict) {
@ -274,8 +272,6 @@ TEST_F(myriadLayersTests_nightly, ReLU_PostOp_Conflict) {
TBlob<uint8_t>::Ptr weights(GenWeights(num_weights + num_bias));
StatusCode st;
ASSERT_NO_THROW(readNetwork(model, weights));
const auto& network = _cnnNetwork;
@ -287,6 +283,5 @@ TEST_F(myriadLayersTests_nightly, ReLU_PostOp_Conflict) {
_outputsInfo["relu"]->setPrecision(Precision::FP16);
_outputsInfo["power"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(st, StatusCode::OK);
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, {}));
}

View File

@ -14,8 +14,6 @@ const std::string relu_param = "negative_slope";
class myriadLayersTestsReLUMergeWithBias_smoke : public myriadLayersTests_nightly {
public:
void RunTest(const std::string& model, size_t num_weights, size_t num_bias) {
StatusCode st;
TBlob<uint8_t>::Ptr weights(GenWeights(num_weights + num_bias));
ASSERT_NO_THROW(readNetwork(model, weights));
@ -28,22 +26,16 @@ public:
_outputsInfo = network.getOutputsInfo();
_outputsInfo["relu"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{ {CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES)},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} },
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)} }));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
{
auto reluAndBiasLayerIt = perfMap.find("relu+Bias");

View File

@ -8,9 +8,7 @@
TEST_F(myriadEliminateReshapeTests_smoke, SplitConvConcat) {
ASSERT_NO_THROW(_cnnNetwork = InferenceEngine::CNNNetwork(ngraph::builder::subgraph::makeSplitConvConcat()));
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork,
{
{
InferenceEngine::MYRIAD_PERF_REPORT_MODE,
@ -24,19 +22,14 @@ TEST_F(myriadEliminateReshapeTests_smoke, SplitConvConcat) {
CONFIG_KEY(PERF_COUNT),
CONFIG_VALUE(YES)
}
},
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
auto layerInfo = perfMap["MobilenetV1/Logits/SpatialSqueeze"];
ASSERT_EQ(InferenceEngineProfileInfo::NOT_RUN, layerInfo.status);
@ -192,8 +185,6 @@ TEST_F(myriadLayersTests_nightly, ReshapeAfterConcat_Eliminate) {
</net>
)V0G0N";
StatusCode st;
ASSERT_NO_THROW(readNetwork(model));
const auto& network = _cnnNetwork;
@ -206,37 +197,29 @@ TEST_F(myriadLayersTests_nightly, ReshapeAfterConcat_Eliminate) {
_outputsInfo = network.getOutputsInfo();
_outputsInfo["reshape_copy"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{ {InferenceEngine::MYRIAD_PERF_REPORT_MODE, InferenceEngine::MYRIAD_PER_STAGE},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, CONFIG_VALUE(NO)},
{CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES)} }, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
{CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES)} }));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr input1;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input1", input1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input1 = _inferRequest.GetBlob("input1"));
GenRandomData(input1);
Blob::Ptr input2;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input2", input2, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input2 = _inferRequest.GetBlob("input2"));
GenRandomData(input2);
Blob::Ptr input3;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input3", input3, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input3 = _inferRequest.GetBlob("input3"));
GenRandomData(input3);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr output;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("reshape_copy", output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(output = _inferRequest.GetBlob("reshape_copy"));
_refBlob = make_shared_blob<ie_fp16>({Precision::FP16, output->getTensorDesc().getDims(), Layout::ANY});
_refBlob->allocate();
@ -259,8 +242,7 @@ TEST_F(myriadLayersTests_nightly, ReshapeAfterConcat_Eliminate) {
CompareCommonAbsolute(output, _refBlob, 0);
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
auto layerInfo = perfMap["reshape"];
EXPECT_EQ(InferenceEngineProfileInfo::NOT_RUN, layerInfo.status);

View File

@ -208,8 +208,6 @@ TEST_P(myriadLayersTestsReshapeBeforeFC_smoke, OptimizeReshapeIfItIsPlacedBefore
}
std::string outputName = "fc6";
StatusCode st = InferenceEngine::OK;
InferenceEngine::ResponseDesc resp;
TBlob<uint8_t>::Ptr weights(GenWeights(9280 / sizeof(ie_fp16)));
Core ie;
@ -221,27 +219,21 @@ TEST_P(myriadLayersTestsReshapeBeforeFC_smoke, OptimizeReshapeIfItIsPlacedBefore
auto outputsInfo = network.getOutputsInfo();
outputsInfo[outputName]->setPrecision(Precision::FP16);
InferenceEngine::IExecutableNetwork::Ptr exeNetwork;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network,
InferenceEngine::ExecutableNetwork exeNetwork;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{ {InferenceEngine::MYRIAD_PERF_REPORT_MODE, InferenceEngine::MYRIAD_PER_STAGE},
{InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, HWConfigValue},
{CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES) }}, &resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
{CONFIG_KEY(PERF_COUNT), CONFIG_VALUE(YES) }}));
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
Blob::Ptr input;
ASSERT_NO_THROW(st = inferRequest->GetBlob("input", input, &resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << resp.msg;
ASSERT_NO_THROW(input = inferRequest.GetBlob("input"));
ASSERT_NO_THROW(inferRequest.Infer());
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = inferRequest->GetPerformanceCounts(perfMap, &resp));
ASSERT_EQ(StatusCode::OK, st) << resp.msg;
ASSERT_NO_THROW(perfMap = inferRequest.GetPerformanceCounts());
auto layerInfo = perfMap["flatten_0"];
EXPECT_EQ(InferenceEngineProfileInfo::NOT_RUN, layerInfo.status);

View File

@ -670,7 +670,7 @@ public:
}
}
void PrepareInputAndReference(const std::string& model_prior_network, const std::string& output_layer, StatusCode& st)
void PrepareInputAndReference(const std::string& model_prior_network, const std::string& output_layer)
{
SetSeed(DEFAULT_SEED_VALUE);
@ -692,22 +692,17 @@ public:
std::map<std::string, std::string> networkConfig;
networkConfig["VPU_HW_STAGES_OPTIMIZATION"] = "NO";
IExecutableNetwork::Ptr exeNetwork;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, network_part, networkConfig, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(exeNetwork, nullptr) << _resp.msg;
ExecutableNetwork exeNetwork;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(network_part, networkConfig));
IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
Blob::Ptr input0;
ASSERT_NO_THROW(st = inferRequest->GetBlob("input0", input0, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input0 = inferRequest.GetBlob("input0"));
Blob::Ptr input1;
ASSERT_NO_THROW(st = inferRequest->GetBlob("input1", input1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input1 = inferRequest.GetBlob("input1"));
// Allocate buffer
input0_share = make_shared_blob<ie_fp16>({Precision::FP16, input0->getTensorDesc().getDims(), ANY});
@ -729,14 +724,11 @@ public:
std::copy(input0_share_data, input0_share_data + input0_share->size(), input0_data);
std::copy(input1_share_data, input1_share_data + input1_share->size(), input1_data);
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob(output_layer.c_str(), prior_network_output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(prior_network_output = inferRequest.GetBlob(output_layer.c_str()));
}
void RunNetwork(const std::string& model, const std::string& output_layer, StatusCode& st)
void RunNetwork(const std::string& model, const std::string& output_layer)
{
ASSERT_NO_THROW(readNetwork(model));
@ -754,23 +746,16 @@ public:
std::map<std::string, std::string> networkConfig;
networkConfig["VPU_HW_STAGES_OPTIMIZATION"] = "NO";
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, networkConfig, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, networkConfig));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr input0;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input0", input0, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input0 = _inferRequest.GetBlob("input0"));
Blob::Ptr input1;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input1", input1, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(input1 = _inferRequest.GetBlob("input1"));
ASSERT_NO_THROW(st = _inferRequest->GetBlob(output_layer.c_str(), outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob(output_layer.c_str()));
_refBlob = make_shared_blob<ie_fp16>({Precision::FP16, outputBlob->getTensorDesc().getDims(), ANY});
_refBlob->allocate();
@ -786,8 +771,7 @@ public:
std::copy(input0_share_data, input0_share_data + input0_share->size(), input0_data);
std::copy(input1_share_data, input1_share_data + input1_share->size(), input1_data);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
}
Blob::Ptr input0_share;
@ -798,15 +782,11 @@ public:
TEST_F(myriadLayersRfcnTests_smoke, ReshapeRfcn)
{
StatusCode st = GENERAL_ERROR;
std::string prior_network_output_layer = "cls_prob";
std::string test_network_output_layer = "cls_prob_reshape";
ASSERT_NO_THROW(PrepareInputAndReference(model_to_softmax, prior_network_output_layer, st));
ASSERT_EQ(StatusCode::OK, st) << "PrepareInputAndReference failed";
ASSERT_NO_THROW(RunNetwork(model_to_reshape, test_network_output_layer, st));
ASSERT_EQ(StatusCode::OK, st) << "RunNetwork failed";
ASSERT_NO_THROW(PrepareInputAndReference(model_to_softmax, prior_network_output_layer));
ASSERT_NO_THROW(RunNetwork(model_to_reshape, test_network_output_layer));
ASSERT_EQ(outputBlob->size(), prior_network_output->size());
CompareCommonAbsolute(outputBlob, prior_network_output, 0.0f);
@ -814,15 +794,11 @@ TEST_F(myriadLayersRfcnTests_smoke, ReshapeRfcn)
TEST_F(myriadLayersRfcnTests_smoke, SoftmaxRfcn)
{
StatusCode st = GENERAL_ERROR;
std::string prior_network_output_layer = "ave_cls_score_rois";
std::string test_network_output_layer = "cls_prob";
ASSERT_NO_THROW(PrepareInputAndReference(model_to_pooling, prior_network_output_layer, st));
ASSERT_EQ(StatusCode::OK, st) << "PrepareInputAndReference failed";
ASSERT_NO_THROW(RunNetwork(model_to_softmax, test_network_output_layer, st));
ASSERT_EQ(StatusCode::OK, st) << "RunNetwork failed";
ASSERT_NO_THROW(PrepareInputAndReference(model_to_pooling, prior_network_output_layer));
ASSERT_NO_THROW(RunNetwork(model_to_softmax, test_network_output_layer));
int param_axis = 1;
ref_soft_max(prior_network_output, _refBlob, param_axis);
@ -832,15 +808,11 @@ TEST_F(myriadLayersRfcnTests_smoke, SoftmaxRfcn)
TEST_F(myriadLayersRfcnTests_smoke, GlobalAvgPooling7x7Rfcn)
{
StatusCode st = GENERAL_ERROR;
std::string prior_network_output_layer = "PSROIPooling";
std::string test_network_output_layer = "ave_cls_score_rois";
ASSERT_NO_THROW(PrepareInputAndReference(model_to_psroipooling, prior_network_output_layer, st));
ASSERT_EQ(StatusCode::OK, st) << "PrepareInputAndReference failed";
ASSERT_NO_THROW(RunNetwork(model_to_pooling, test_network_output_layer, st));
ASSERT_EQ(StatusCode::OK, st) << "RunNetwork failed";
ASSERT_NO_THROW(PrepareInputAndReference(model_to_psroipooling, prior_network_output_layer));
ASSERT_NO_THROW(RunNetwork(model_to_pooling, test_network_output_layer));
refGlobalAvgPooling7x7Rfcn(prior_network_output, _refBlob);

View File

@ -189,35 +189,25 @@ TEST_P(myriadLayersTestsROIAlign_smoke, ROIAlign) {
_outputsInfo = network.getOutputsInfo();
_outputsInfo["roi_align"]->setPrecision(Precision::FP16);
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr roisBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("boxes", roisBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(roisBlob = _inferRequest.GetBlob("boxes"));
genROIs(roisBlob, test_params, num_rois);
Blob::Ptr featureMapBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("feature_map", featureMapBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(featureMapBlob = _inferRequest.GetBlob("feature_map"));
GenRandomData(featureMapBlob);
Blob::Ptr batchIndicesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("batch_indices", batchIndicesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(batchIndicesBlob = _inferRequest.GetBlob("batch_indices"));
genBatchIndices(batchIndicesBlob, num_rois, num_batches);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("roi_align", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("roi_align"));
Blob::Ptr refOutputBlob = make_shared_blob<float>({Precision::FP32,
outputBlob->getTensorDesc().getDims(),

View File

@ -223,12 +223,8 @@ public:
outputInfo.second->setLayout(NCHW);
}
InferenceEngine::StatusCode st = InferenceEngine::StatusCode::GENERAL_ERROR;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, {}, &_resp));
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork->CreateInferRequest(_inferRequest, &_resp)) << _resp.msg;
ASSERT_EQ((int) InferenceEngine::StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_inferRequest, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork, {}));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(_inputsInfo = _cnnNetwork.getInputsInfo());
ASSERT_NO_THROW(_outputsInfo = _cnnNetwork.getOutputsInfo());
@ -237,25 +233,20 @@ public:
InferenceEngine::Layout layout = inpt.second->getTensorDesc().getLayout();
Blob::Ptr data;
ASSERT_NO_THROW(st = _inferRequest->GetBlob(inpt.first.c_str(), data, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data = _inferRequest.GetBlob(inpt.first.c_str()));
SetSeed(3);
if (inpt.first == _inputsInfo.begin()->first)
{
GenRandomData(data);
}
else
{
genROIs(data, params, num_rois, method);
}
_inputMap[inpt.first] = data;
}
Blob::Ptr data;
ASSERT_NO_THROW(st = _inferRequest->GetBlob(_outputsInfo.begin()->first.c_str(), data, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(data = _inferRequest.GetBlob(_outputsInfo.begin()->first.c_str()));
_outputMap[_outputsInfo.begin()->first] = data;
}
};

View File

@ -124,34 +124,23 @@ protected:
// Create infer request and get its blobs pointers
//
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr inputBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlob = _inferRequest.GetBlob("input"));
Blob::Ptr indicesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("indices", indicesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(indicesBlob = _inferRequest.GetBlob("indices"));
Blob::Ptr updatesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("updates", updatesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(updatesBlob = _inferRequest.GetBlob("updates"));
Blob::Ptr axisBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("axis", axisBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(axisBlob = _inferRequest.GetBlob("axis"));
Blob::Ptr outputBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("scatter", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("scatter"));
Blob::Ptr referenceBlob;
if (dataType == "I32") {
@ -202,8 +191,7 @@ protected:
outputBlob->getTensorDesc().setLayout(vpu::deviceLayout(outputLayout, layoutPreference));
referenceBlob->getTensorDesc().setLayout(vpu::deviceLayout(outputLayout, layoutPreference));
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
//
// Check result

View File

@ -151,53 +151,41 @@ protected:
_outputsInfo = network.getOutputsInfo();
_outputsInfo["scatter_update"]->setPrecision(Precision::FP16);
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr inputBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("input", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlob = _inferRequest.GetBlob("input"));
void* inputBlobData = inputBlob->buffer();
ASSERT_NE(inputBlobData, nullptr);
std::copy(inputData.cbegin(), inputData.cend(), reinterpret_cast<ie_fp16*>(inputBlobData));
Blob::Ptr indicesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("indices", indicesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(indicesBlob = _inferRequest.GetBlob("indices"));
void* indicesBlobData = indicesBlob->buffer();
ASSERT_NE(indicesBlobData, nullptr);
std::copy(indicesData.cbegin(), indicesData.cend(), reinterpret_cast<int32_t*>(indicesBlobData));
Blob::Ptr updatesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("updates", updatesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(updatesBlob = _inferRequest.GetBlob("updates"));
void* updatesBlobData = updatesBlob->buffer();
ASSERT_NE(updatesBlobData, nullptr);
std::copy(updatesData.cbegin(), updatesData.cend(), reinterpret_cast<ie_fp16*>(updatesBlobData));
Blob::Ptr axisBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("axis", axisBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(axisBlob = _inferRequest.GetBlob("axis"));
void* axisBlobData = axisBlob->buffer();
ASSERT_NE(axisBlobData, nullptr);
std::copy(axisData.cbegin(), axisData.cend(), reinterpret_cast<int32_t*>(axisBlobData));
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("scatter_update", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputBlob = _inferRequest.GetBlob("scatter_update"));
const void* outputBlobDataPtr = outputBlob->cbuffer();
const ie_fp16* outputBlobData = reinterpret_cast<const ie_fp16*>(outputBlobDataPtr);

View File

@ -239,7 +239,6 @@ TEST_P(myriadLayersTestsStridedSlice_smoke, TestsStridedSlice) {
outputsInfo["strided_slice"]->setPrecision(Precision::FP16);
// Load network.
StatusCode st = GENERAL_ERROR;
std::map<std::string, std::string> config = {
{ InferenceEngine::MYRIAD_DETECT_NETWORK_BATCH, CONFIG_VALUE(NO) }
@ -248,29 +247,21 @@ TEST_P(myriadLayersTestsStridedSlice_smoke, TestsStridedSlice) {
config.insert({ InferenceEngine::MYRIAD_DISABLE_REORDER, CONFIG_VALUE(YES) });
}
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(
_exeNetwork, network, config,
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, config));
// Create InferRequest.
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = _exeNetwork.CreateInferRequest());
// Input Data.
InferenceEngine::Blob::Ptr inputBlob;
ASSERT_NO_THROW(st = inferRequest->GetBlob("input", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlob = inferRequest.GetBlob("input"));
GenRandomData(inputBlob);
// Infer & get output blob.
InferenceEngine::Blob::Ptr outputBlob;
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob("strided_slice", outputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(outputBlob = inferRequest.GetBlob("strided_slice"));
// Output Reference.
Blob::Ptr refBlob = InferenceEngine::make_shared_blob<ie_fp16>(outputBlob->getTensorDesc());

View File

@ -76,32 +76,22 @@ protected:
_outputsInfo["topk.1"]->setLayout(defaultLayout(outputDims.size()));
}
StatusCode st = OK;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, _config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, _config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
Blob::Ptr inputValuesBlob;
ASSERT_NO_THROW(st = _inferRequest->GetBlob("topk_input", inputValuesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputValuesBlob = _inferRequest.GetBlob("topk_input"));
GenRandomData(inputValuesBlob);
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
Blob::Ptr outputValuesBlob, outputIndicesBlob;
if (outputValues) {
ASSERT_NO_THROW(st = _inferRequest->GetBlob("topk.0", outputValuesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputValuesBlob = _inferRequest.GetBlob("topk.0"));
}
if (outputIndices) {
ASSERT_NO_THROW(st = _inferRequest->GetBlob("topk.1", outputIndicesBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(outputIndicesBlob = _inferRequest.GetBlob("topk.1"));
}
const InferenceEngine::TensorDesc valuesDesc{dataPrecision, outputDims, defaultLayout(outputDims.size())};

View File

@ -139,9 +139,6 @@ R"V0G0N(
</net>
)V0G0N";
InferenceEngine::StatusCode st = InferenceEngine::OK;
InferenceEngine::ResponseDesc resp;
InferenceEngine::TBlob<uint8_t> *weights_raw = new InferenceEngine::TBlob<uint8_t>(
{InferenceEngine::Precision::U8,
{indices.size() * sizeof(ie_fp16)},

View File

@ -18,8 +18,6 @@ public:
};
TEST_P(myriadGetOutput_nightly, AddOutput) {
StatusCode st;
name_model_full = (*(std::get<0>(std::get<0>(GetParam()))));
name_model_crop = (*(std::get<1>(std::get<0>(GetParam()))));
name_output = std::get<1>(GetParam());
@ -39,26 +37,19 @@ TEST_P(myriadGetOutput_nightly, AddOutput) {
InferenceEngine::Blob::Ptr inputBlob;
InferenceEngine::IExecutableNetwork::Ptr exeNetwork;
InferenceEngine::ExecutableNetwork exeNetwork;
std::map<std::string, std::string> networkConfig;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetwork, crop_network, networkConfig, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(exeNetwork = _vpuPluginPtr->LoadNetwork(crop_network, networkConfig));
InferenceEngine::IInferRequest::Ptr inferRequest;
ASSERT_NO_THROW(st = exeNetwork->CreateInferRequest(inferRequest, &_resp));
InferenceEngine::InferRequest inferRequest;
ASSERT_NO_THROW(inferRequest = exeNetwork.CreateInferRequest());
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob(networkInputs.begin()->first.c_str(), inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inputBlob = inferRequest.GetBlob(networkInputs.begin()->first.c_str()));
GenRandomData(inputBlob);
InferenceEngine::Blob::Ptr output_crop;
ASSERT_NO_THROW(st = inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequest->GetBlob(networkOutputs.begin()->first.c_str(), output_crop, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequest.Infer());
ASSERT_NO_THROW(output_crop = inferRequest.GetBlob(networkOutputs.begin()->first.c_str()));
/*Full Network Infer */
@ -66,31 +57,24 @@ TEST_P(myriadGetOutput_nightly, AddOutput) {
full_network.addOutput(name_output, 0);
InferenceEngine::InputsDataMap networkInputsFull;
networkInputsFull = full_network.getInputsInfo();
InferenceEngine::OutputsDataMap networkOutputsFull;
networkOutputsFull = full_network.getOutputsInfo();
InferenceEngine::InputsDataMap networkInputsFull = full_network.getInputsInfo();
InferenceEngine::OutputsDataMap networkOutputsFull = full_network.getOutputsInfo();
networkInputsFull.begin()->second->setPrecision(InferenceEngine::Precision::FP16);
networkOutputsFull.begin()->second->setPrecision(InferenceEngine::Precision::FP16);
(++networkOutputsFull.begin())->second->setPrecision(InferenceEngine::Precision::FP16);
InferenceEngine::IExecutableNetwork::Ptr exeNetworkFull;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(exeNetworkFull, full_network, networkConfig, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::ExecutableNetwork exeNetworkFull;
ASSERT_NO_THROW(exeNetworkFull = _vpuPluginPtr->LoadNetwork(full_network, networkConfig));
InferenceEngine::IInferRequest::Ptr inferRequestFull;
ASSERT_NO_THROW(st = exeNetworkFull->CreateInferRequest(inferRequestFull, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferenceEngine::InferRequest inferRequestFull;
ASSERT_NO_THROW(inferRequestFull = exeNetworkFull.CreateInferRequest());
ASSERT_NO_THROW(st = inferRequestFull->SetBlob("data", inputBlob, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequestFull.SetBlob("data", inputBlob));
InferenceEngine::Blob::Ptr output_full;
ASSERT_NO_THROW(st = inferRequestFull->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequestFull->GetBlob(name_output.c_str(), output_full, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequestFull.Infer());
ASSERT_NO_THROW(output_full = inferRequestFull.GetBlob(name_output.c_str()));
CompareCommonAbsolute(output_full, output_crop, 0.0f);
}

View File

@ -28,9 +28,7 @@ TEST_F(myriadGetPerformanceTests_nightly, CorrectTimings) {
ASSERT_NO_THROW(_cnnNetwork = CNNNetwork(fnPtr));
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork,
{
{
CONFIG_KEY(PERF_COUNT),
@ -40,22 +38,17 @@ TEST_F(myriadGetPerformanceTests_nightly, CorrectTimings) {
CONFIG_KEY(LOG_LEVEL),
CONFIG_VALUE(LOG_WARNING)
}
}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
}));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
time_point start = Time::now();
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.Infer());
time_point end = Time::now();
double inferTime_mSec = (std::chrono::duration_cast<ms>(end - start)).count();
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
long long stagesTime_uSec = 0;
for (const auto &i : perfMap) {
stagesTime_uSec += i.second.realTime_uSec;

View File

@ -660,12 +660,10 @@ TEST_F(MyriadX_HW_Tests_nightly, With_3_FC_Layers) {
GenRandomData(input);
Blob::Ptr swOutput, hwOutput;
_inferRequest.reset();
_exeNetwork.reset();
_inferRequest = {};
_exeNetwork = {};
StatusCode st;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network,
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network,
{
{
InferenceEngine::MYRIAD_PERF_REPORT_MODE,
@ -675,22 +673,15 @@ TEST_F(MyriadX_HW_Tests_nightly, With_3_FC_Layers) {
InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION,
CONFIG_VALUE(YES)
},
},
&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
}));
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(_inferRequest.SetBlob("input", input));
ASSERT_NO_THROW(_inferRequest.Infer());
ASSERT_NO_THROW(st = _inferRequest->SetBlob("input", input, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
std::vector<float> results(sizeof(names) / sizeof(names[0]));
for (size_t i = 0; i < sizeof(names) / sizeof(names[0]); ++i) {
ASSERT_NO_THROW(st = _inferRequest->GetBlob(names[i].c_str(), hwOutput, &_resp));
ASSERT_NO_THROW(hwOutput = _inferRequest.GetBlob(names[i].c_str()));
ASSERT_NE(hwOutput, nullptr);
BufferWrapper res_ptr(hwOutput);
results[i] = res_ptr[0];

View File

@ -78,23 +78,15 @@ public:
{ InferenceEngine::MYRIAD_PERF_REPORT_MODE, InferenceEngine::MYRIAD_PER_STAGE }
};
StatusCode st;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork, config));
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
IInferRequest::Ptr inferRequests[NUM_REQUESTS];
InferRequest inferRequests[NUM_REQUESTS];
Blob::Ptr outputs[NUM_REQUESTS];
for (int i = 0; i < NUM_REQUESTS; ++i) {
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(inferRequests[i], &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequests[i]->SetBlob(_cnnNetwork.getInputsInfo().begin()->first.c_str(), _input, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = inferRequests[i]->GetBlob(_cnnNetwork.getOutputsInfo().begin()->first.c_str(), outputs[i], &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequests[i] = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(inferRequests[i].SetBlob(_cnnNetwork.getInputsInfo().begin()->first.c_str(), _input));
ASSERT_NO_THROW(outputs[i] = inferRequests[i].GetBlob(_cnnNetwork.getOutputsInfo().begin()->first.c_str()));
}
std::vector<Blob::Ptr> allOutputs[NUM_REQUESTS];
@ -104,13 +96,11 @@ public:
for (int iterInd = 0; iterInd < numIters; ++iterInd) {
for (int inferInd = 0; inferInd < NUM_REQUESTS; ++inferInd) {
ASSERT_NO_THROW(st = inferRequests[inferInd]->StartAsync(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(inferRequests[inferInd].StartAsync());
}
for (int inferInd = 0; inferInd < NUM_REQUESTS; ++inferInd) {
ASSERT_NO_THROW(st = inferRequests[inferInd]->Wait(IInferRequest::RESULT_READY, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_EQ(StatusCode::OK, inferRequests[inferInd].Wait(IInferRequest::RESULT_READY));
}
for (int inferInd = 0; inferInd < NUM_REQUESTS; ++inferInd) {

View File

@ -32,11 +32,8 @@ struct RunInfo {
class MyriadX_HW_Tests_nightly : public myriadLayersTests_nightly {
public:
void CheckHWRun() {
StatusCode st;
std::map<std::string, InferenceEngineProfileInfo> perfMap;
ASSERT_NO_THROW(st = _inferRequest->GetPerformanceCounts(perfMap, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(perfMap = _inferRequest.GetPerformanceCounts());
std::vector<std::pair<std::string, InferenceEngineProfileInfo>> perfVec(perfMap.begin(), perfMap.end());
std::sort(perfVec.begin(), perfVec.end(),
@ -120,10 +117,8 @@ public:
const char* outputName,
const RunInfo& runInfo,
const std::string& logLevel = CONFIG_VALUE(LOG_NONE)) {
_inferRequest.reset();
_exeNetwork.reset();
StatusCode st;
_inferRequest = {};
_exeNetwork = {};
std::map<std::string, std::string> config = {
{ InferenceEngine::MYRIAD_ENABLE_HW_ACCELERATION, runInfo.hwMode ? CONFIG_VALUE(YES) : CONFIG_VALUE(NO) },
@ -134,20 +129,11 @@ public:
{ CONFIG_KEY(LOG_LEVEL), logLevel }
};
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, config, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->SetBlob(inputName, input, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->GetBlob(outputName, output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network, config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
ASSERT_NO_THROW(_inferRequest.SetBlob(inputName, input));
ASSERT_NO_THROW(output = _inferRequest.GetBlob(outputName));
ASSERT_NO_THROW(_inferRequest.Infer());
}
void CompareWithSW(float errorThreshold, vpu::LayoutPreference layoutPreference = vpu::LayoutPreference::ChannelMajor) {

View File

@ -48,8 +48,6 @@ TEST_F(myriadInferTests_nightly, NCHW_Input) {
</net>
)V0G0N";
StatusCode st;
ASSERT_NO_THROW(readNetwork(model));
const auto& network = _cnnNetwork;
@ -60,12 +58,8 @@ TEST_F(myriadInferTests_nightly, NCHW_Input) {
_outputsInfo = network.getOutputsInfo();
_outputsInfo["power"]->setPrecision(Precision::FP16);
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(st = _exeNetwork->CreateInferRequest(_inferRequest, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(network));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
auto dims = _inputsInfo["data"]->getTensorDesc().getDims();
@ -89,23 +83,12 @@ TEST_F(myriadInferTests_nightly, NCHW_Input) {
inputNCHW->buffer().as<ie_fp16*>()[tensorDescNCHW.offset(i)] = inputNHWC->cbuffer().as<const ie_fp16*>()[tensorDescNHWC.offset(i)];
}
ASSERT_NO_THROW(st = _inferRequest->SetBlob("data", inputNHWC, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->SetBlob("power", outputNHWC, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->SetBlob("data", inputNCHW, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->SetBlob("power", outputNCHW, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = _inferRequest->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.SetBlob("data", inputNHWC));
ASSERT_NO_THROW(_inferRequest.SetBlob("power", outputNHWC));
ASSERT_NO_THROW(_inferRequest.Infer());
ASSERT_NO_THROW(_inferRequest.SetBlob("data", inputNCHW));
ASSERT_NO_THROW(_inferRequest.SetBlob("power", outputNCHW));
ASSERT_NO_THROW(_inferRequest.Infer());
CompareCommonAbsolute(outputNHWC, outputNCHW, 0.0);
}
@ -222,8 +205,6 @@ TEST_F(myriadInferTests_nightly, AddOutputToConvWithReLU) {
</Net>
)V0G0N";
StatusCode st;
TBlob<uint8_t>::Ptr weights(GenWeights(8320 / sizeof(ie_fp16)));
InferenceEngine::Core ie;
@ -241,23 +222,14 @@ TEST_F(myriadInferTests_nightly, AddOutputToConvWithReLU) {
Blob::Ptr conv_output;
{
IExecutableNetwork::Ptr conv_exe;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(conv_exe, conv_network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(conv_exe, nullptr) << _resp.msg;
ExecutableNetwork conv_exe;
ASSERT_NO_THROW(conv_exe = _vpuPluginPtr->LoadNetwork(conv_network));
IInferRequest::Ptr conv_req;
ASSERT_NO_THROW(st = conv_exe->CreateInferRequest(conv_req, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = conv_req->SetBlob("input", input, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = conv_req->GetBlob("conv", conv_output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = conv_req->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferRequest conv_req;
ASSERT_NO_THROW(conv_req = conv_exe.CreateInferRequest());
ASSERT_NO_THROW(conv_req.SetBlob("input", input));
ASSERT_NO_THROW(conv_output = conv_req.GetBlob("conv"));
ASSERT_NO_THROW(conv_req.Infer());
}
auto full_network = ie.ReadNetwork(full_model, weights);
@ -273,23 +245,14 @@ TEST_F(myriadInferTests_nightly, AddOutputToConvWithReLU) {
Blob::Ptr full_output;
{
IExecutableNetwork::Ptr full_exe;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(full_exe, full_network, {}, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NE(full_exe, nullptr) << _resp.msg;
ExecutableNetwork full_exe;
ASSERT_NO_THROW(full_exe = _vpuPluginPtr->LoadNetwork(full_network));
IInferRequest::Ptr full_req;
ASSERT_NO_THROW(st = full_exe->CreateInferRequest(full_req, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = full_req->SetBlob("input", input, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = full_req->GetBlob("conv", full_output, &_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(st = full_req->Infer(&_resp));
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
InferRequest full_req;
ASSERT_NO_THROW(full_req = full_exe.CreateInferRequest());
ASSERT_NO_THROW(full_req.SetBlob("input", input));
ASSERT_NO_THROW(full_output = full_req.GetBlob("conv"));
ASSERT_NO_THROW(full_req.Infer());
}
CompareCommonAbsolute(full_output, conv_output, 0.0f);

View File

@ -49,8 +49,7 @@ public:
IE_ASSERT(generateNetAndInfer(NetworkInitParams().useHWOpt(CheckMyriadX()).runRefGraph(false)));
std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> perfMap;
_inferRequest->GetPerformanceCounts(perfMap, nullptr);
auto perfMap = _inferRequest.GetPerformanceCounts();
executionMicroseconds = 0;
for (const auto& perfPair : perfMap) {

View File

@ -53,8 +53,8 @@ void graphTransformerFunctionalTests::PrepareGraphCompilation() {
// For the new network plugin tries to find new free device first (already booted or not booted),
// then to reuse busy devices. If we release the executable network, it marks its device as free and booted.
// Next network will find such device and will use it without boot, which is the fastest case.
_executableNetwork = ExecutableNetwork();
_inferRequest = nullptr;
_executableNetwork = {};
_inferRequest = {};
CreateModel();
}
@ -101,8 +101,7 @@ int64_t graphTransformerFunctionalTests::CompileAndInfer(Blob::Ptr& inputBlob, B
IE_ASSERT(Infer());
std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> perfMap;
_inferRequest->GetPerformanceCounts(perfMap, nullptr);
auto perfMap = _inferRequest.GetPerformanceCounts();
int64_t executionMicroseconds = 0;
for (const auto& perfPair : perfMap) {

View File

@ -21,45 +21,37 @@ typedef myriadLayerTestBaseWithParam<config_t> myriadIncorrectModelsConfigsTests
//------------------------------------------------------------------------------
TEST_P(myriadCorrectModelsConfigsTests_nightly, LoadNetworkWithCorrectConfig) {
InferenceEngine::ResponseDesc response;
const auto &config = GetParam();
DISABLE_IF(!hasAppropriateStick(config));
InferenceEngine::CNNNetwork net(ngraph::builder::subgraph::makeSplitConvConcat());
InferenceEngine::IExecutableNetwork::Ptr executable;
InferenceEngine::StatusCode sts = _vpuPluginPtr->LoadNetwork(executable, net, config, &response);
ASSERT_EQ(InferenceEngine::StatusCode::OK, sts) << response.msg;
InferenceEngine::ExecutableNetwork executable;
ASSERT_NO_THROW(executable = _vpuPluginPtr->LoadNetwork(net, config));
}
TEST_P(myriadCorrectModelsConfigsTests_nightly, CreateInferRequestWithAvailableDevice) {
InferenceEngine::ResponseDesc response;
const auto &config = GetParam();
DISABLE_IF(!hasAppropriateStick(config));
InferenceEngine::CNNNetwork net(ngraph::builder::subgraph::makeSplitConvConcat());
InferenceEngine::IExecutableNetwork::Ptr executable;
InferenceEngine::StatusCode sts = _vpuPluginPtr->LoadNetwork(executable, net, config, &response);
ASSERT_EQ(InferenceEngine::StatusCode::OK, sts) << response.msg;
InferenceEngine::ExecutableNetwork executable;
ASSERT_NO_THROW(executable = _vpuPluginPtr->LoadNetwork(net, config));
InferenceEngine::IInferRequest::Ptr request;
sts = executable->CreateInferRequest(request, &response);
ASSERT_EQ(InferenceEngine::StatusCode::OK, sts) << response.msg;
InferenceEngine::InferRequest request;
ASSERT_NO_THROW(request = executable.CreateInferRequest());
}
TEST_P(myriadCorrectModelsConfigsTests_nightly, CreateInferRequestWithUnavailableDevice) {
InferenceEngine::ResponseDesc response;
const auto &config = GetParam();
DISABLE_IF(hasAppropriateStick(config));
InferenceEngine::CNNNetwork net(ngraph::builder::subgraph::makeSplitConvConcat());
InferenceEngine::IExecutableNetwork::Ptr executable;
InferenceEngine::StatusCode sts = _vpuPluginPtr->LoadNetwork(executable, net, config, &response);
ASSERT_EQ(InferenceEngine::StatusCode::OK, sts) << response.msg;
InferenceEngine::ExecutableNetwork executable;
ASSERT_NO_THROW(executable = _vpuPluginPtr->LoadNetwork(net, config));
InferenceEngine::IInferRequest::Ptr request;
sts = executable->CreateInferRequest(request, &response);
ASSERT_EQ(InferenceEngine::StatusCode::GENERAL_ERROR, sts) << response.msg;
InferenceEngine::InferRequest request;
ASSERT_THROW(request = executable.CreateInferRequest(),
InferenceEngine::details::InferenceEngineException);
}
//------------------------------------------------------------------------------
@ -67,14 +59,12 @@ TEST_P(myriadCorrectModelsConfigsTests_nightly, CreateInferRequestWithUnavailabl
//------------------------------------------------------------------------------
TEST_P(myriadIncorrectModelsConfigsTests_nightly, LoadNetworkWithIncorrectConfig) {
InferenceEngine::ResponseDesc response;
const auto &config = GetParam();
InferenceEngine::CNNNetwork net(ngraph::builder::subgraph::makeSplitConvConcat());
InferenceEngine::IExecutableNetwork::Ptr executable;
InferenceEngine::StatusCode sts = _vpuPluginPtr->LoadNetwork(executable, net, config, &response);
ASSERT_EQ(InferenceEngine::StatusCode::GENERAL_ERROR, sts) << response.msg;
InferenceEngine::ExecutableNetwork executable;
ASSERT_THROW(executable = _vpuPluginPtr->LoadNetwork(net, config),
InferenceEngine::details::InferenceEngineException);
}
//------------------------------------------------------------------------------

View File

@ -17,12 +17,9 @@ typedef myriadLayerTestBaseWithParam<num_graphs> myriadMultipleGraphsTests_night
TEST_P(myriadMultipleGraphsTests_nightly, LoadGraphsOnDevice) {
ASSERT_NO_THROW(_cnnNetwork = InferenceEngine::CNNNetwork(ngraph::builder::subgraph::makeSplitConvConcat()));
const int num_graphs = GetParam();
StatusCode st;
std::vector<InferenceEngine::IExecutableNetwork::Ptr> exeNetwork(num_graphs);
std::map<std::string, std::string> networkConfig;
std::vector<InferenceEngine::ExecutableNetwork> exeNetworks(num_graphs);
for (int i = 0; i < num_graphs; ++i) {
st = _vpuPluginPtr->LoadNetwork(exeNetwork[i], _cnnNetwork, networkConfig, &_resp);
ASSERT_EQ(StatusCode::OK, st) << _resp.msg;
ASSERT_NO_THROW(exeNetworks[i] = _vpuPluginPtr->LoadNetwork(_cnnNetwork));
}
}

View File

@ -48,7 +48,7 @@ void vpuLayersTests::TearDown() {
_cnnNetwork.serialize(xmlName, weightsName);
std::string blobName = filename + ".blob";
_exeNetwork->Export(blobName, nullptr);
ASSERT_NO_THROW(_exeNetwork.Export(blobName));
}
}
@ -76,8 +76,7 @@ Blob::Ptr vpuLayersTests::getReferenceOutput() {
}
void vpuLayersTests::dumpPerformance() {
std::map<std::string, InferenceEngine::InferenceEngineProfileInfo> perfMap;
_inferRequest->GetPerformanceCounts(perfMap, nullptr);
auto perfMap = _inferRequest.GetPerformanceCounts();
std::vector <std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo>> perfVec(perfMap.begin(), perfMap.end());
std::sort(perfVec.begin(), perfVec.end(),
[=](const std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo> &pair1,
@ -96,8 +95,7 @@ void vpuLayersTests::dumpPerformance() {
}
bool vpuLayersTests::wasCustomLayerInferred() const {
auto perfMap = std::map<std::string, InferenceEngine::InferenceEngineProfileInfo>{};
_inferRequest->GetPerformanceCounts(perfMap, nullptr);
auto perfMap = _inferRequest.GetPerformanceCounts();
const auto isCustomLayer = [&](const std::pair<std::string, InferenceEngine::InferenceEngineProfileInfo>& info) {
return !strcmp(info.second.exec_type, "Custom");
};
@ -143,7 +141,7 @@ void vpuLayersTests::genInputBlobs(bool lockLayout) {
ASSERT_NE(genDataCallback, nullptr);
genDataCallback(inputBlob);
ASSERT_EQ(InferenceEngine::StatusCode::OK, _inferRequest->SetBlob(input.first.c_str(), inputBlob, &_resp)) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.SetBlob(input.first.c_str(), inputBlob));
_inputMap[input.first] = inputBlob;
genDataCallback = _genDataCallback;
@ -158,7 +156,7 @@ void vpuLayersTests::genOutputBlobs(bool lockLayout) {
for (const auto& output : _outputsInfo) {
auto outputBlob = allocateBlob(output.second, lockLayout);
ASSERT_EQ(InferenceEngine::StatusCode::OK, _inferRequest->SetBlob(output.first.c_str(), outputBlob, &_resp)) << _resp.msg;
ASSERT_NO_THROW(_inferRequest.SetBlob(output.first.c_str(), outputBlob));
_outputMap[output.first] = outputBlob;
}
@ -186,12 +184,8 @@ void vpuLayersTests::createInferRequest(const NetworkParams& params) {
config[InferenceEngine::MYRIAD_PERF_REPORT_MODE] = InferenceEngine::MYRIAD_PER_STAGE;
config[InferenceEngine::MYRIAD_FORCE_DEPRECATED_CNN_CONVERSION] = CONFIG_VALUE(NO); // Make VPU plugin be able to use NGraph network.
InferenceEngine::StatusCode st = InferenceEngine::StatusCode::GENERAL_ERROR;
ASSERT_NO_THROW(st = _vpuPluginPtr->LoadNetwork(_exeNetwork, _cnnNetwork, config, &_resp));
ASSERT_NE(_exeNetwork, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork->CreateInferRequest(_inferRequest, &_resp)) << _resp.msg;
ASSERT_EQ((int) InferenceEngine::StatusCode::OK, st) << _resp.msg;
ASSERT_NE(_inferRequest, nullptr) << _resp.msg;
ASSERT_NO_THROW(_exeNetwork = _vpuPluginPtr->LoadNetwork(_cnnNetwork, config));
ASSERT_NO_THROW(_inferRequest = _exeNetwork.CreateInferRequest());
genInputBlobs(params._lockLayout);
genOutputBlobs(params._lockLayout);
@ -246,13 +240,12 @@ void vpuLayersTests::readNetwork(const std::string& modelFilename, const std::st
}
bool vpuLayersTests::Infer() {
if (_inferRequest == nullptr ||
_inputMap.empty() ||
_outputMap.empty())
if (_inputMap.empty() || _outputMap.empty())
return false;
const auto st = _inferRequest->Infer(&_resp);
EXPECT_EQ(InferenceEngine::StatusCode::OK, st) << _resp.msg;
_inferRequest.Infer();
// dumpPerformance();
if (!_config[InferenceEngine::MYRIAD_CUSTOM_LAYERS].empty()) {
EXPECT_TRUE(wasCustomLayerInferred())
<< "CustomBindings.xml has been provided but Custom layer was not inferred";
@ -271,8 +264,8 @@ bool vpuLayersTests::generateNetAndInfer(const NetworkParams& params) {
void vpuLayersTests::ResetGeneratedNet() {
SetSeed(DEFAULT_SEED_VALUE);
_exeNetwork.reset();
_inferRequest.reset();
_exeNetwork = {};
_inferRequest = {};
}
void vpuLayersTests::ResetReferenceLayers() {

View File

@ -118,13 +118,12 @@ protected:
IRVersion _irVersion = IRVersion::v7;
InferenceEngine::CNNNetwork _cnnNetwork;
InferenceEngine::ResponseDesc _resp;
InferenceEngine::InputsDataMap _inputsInfo;
InferenceEngine::BlobMap _inputMap;
InferenceEngine::BlobMap _outputMap;
InferenceEngine::OutputsDataMap _outputsInfo;
InferenceEngine::IExecutableNetwork::Ptr _exeNetwork;
InferenceEngine::IInferRequest::Ptr _inferRequest;
InferenceEngine::ExecutableNetwork _exeNetwork;
InferenceEngine::InferRequest _inferRequest;
InferenceEngine::Blob::Ptr _refBlob;
VpuTestNet _testNet;