[DOCS] Python Exclusives overview (#10946)

* Add python docs

* Small fix

* Apply comments

* Fix style
This commit is contained in:
Jan Iwaszkiewicz 2022-03-15 12:26:12 +01:00 committed by GitHub
parent 29144d3a6b
commit 660c6a3e84
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 277 additions and 0 deletions

View File

@ -0,0 +1,143 @@
# OpenVINO™ Python API exclusives {#openvino_docs_OV_Runtime_UG_Python_API_exclusives}
OpenVINO™ Runtime Python API is exposing additional features and helpers to elevate user experience. Main goal of Python API is to provide user-friendly and simple, still powerful, tool for Python users.
## Easier model compilation
`CompiledModel` can be easily created with the helper method. It hides `Core` creation and applies `AUTO` device by default.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [auto_compilation]
@endsphinxdirective
## Model/CompiledModel inputs and outputs
Besides functions aligned to C++ API, some of them have their Pythonic counterparts or extensions. For example, `Model` and `CompiledModel` inputs/outputs can be accessed via properties.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [properties_example]
@endsphinxdirective
Refer to Python API documentation on which helper functions or properties are available for different classes.
## Working with Tensor
Python API allows passing data as tensors. `Tensor` object holds a copy of the data from the given array. `dtype` of numpy arrays is converted to OpenVINO™ types automatically.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [tensor_basics]
@endsphinxdirective
### Shared memory mode
`Tensor` objects can share the memory with numpy arrays. By specifing `shared_memory` argument, a `Tensor` object does not perform copy of data and has access to the memory of the numpy array.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [tensor_shared_mode]
@endsphinxdirective
### Slices of array's memory
One of the `Tensor` class constructors allows to share the slice of array's memory. When `shape` is specified in the constructor that has the numpy array as first argument, it triggers the special shared memory mode.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [tensor_slice_mode]
@endsphinxdirective
## Running inference
Python API supports extra calling methods to synchronous and asynchronous modes for inference.
All infer methods allow users to pass data as popular numpy arrays, gathered in either Python dicts or lists.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [passing_numpy_array]
@endsphinxdirective
Results from inference can be obtained in various ways:
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [getting_results]
@endsphinxdirective
### Synchronous mode - extended
Python API provides different synchronous calls to infer model, which block the application execution. Additionally these calls return results of inference:
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [sync_infer]
@endsphinxdirective
### AsyncInferQueue
Asynchronous mode pipelines can be supported with wrapper class called `AsyncInferQueue`. This class automatically spawns pool of `InferRequest` objects (also called "jobs") and provides synchronization mechanisms to control flow of the pipeline.
Each job is distinguishable by unique `id`, which is in the range from 0 up to number of jobs specified in `AsyncInferQueue` constructor.
Function call `start_async` is not required to be synchronized, it waits for any available job if queue is busy/overloaded. Every `AsyncInferQueue` code block should end with `wait_all` function. It provides "global" synchronization of all jobs in the pool and ensure that access to them is safe.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [asyncinferqueue]
@endsphinxdirective
#### Acquire results from requests
After the call to `wait_all`, jobs and their data can be safely accessed. Acquring of a specific job with `[id]` returns `InferRequest` object, which results in seamless retrieval of the output data.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [asyncinferqueue_access]
@endsphinxdirective
#### Setting callbacks
Another feature of `AsyncInferQueue` is ability of setting callbacks. When callback is set, any job that ends inference, calls upon Python function. Callback function must have two arguments. First is the request that calls the callback, it provides `InferRequest` API. Second one being called "userdata", provides possibility of passing runtime values, which can be of any Python type and later used inside callback function.
The callback of `AsyncInferQueue` is uniform for every job. When executed, GIL is acquired to ensure safety of data manipulation inside the function.
@sphinxdirective
.. doxygensnippet:: docs/snippets/ov_python_exclusives.py
:language: python
:fragment: [asyncinferqueue_set_callback]
@endsphinxdirective

View File

@ -19,6 +19,7 @@
openvino_docs_OV_UG_Hetero_execution
openvino_docs_OV_UG_Automatic_Batching
openvino_docs_IE_DG_network_state_intro
openvino_docs_OV_Runtime_UG_Python_API_exclusives
openvino_2_0_transition_guide
openvino_docs_OV_Should_be_in_performance

View File

@ -0,0 +1,133 @@
# Copyright (C) 2018-2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
#! [auto_compilation]
import openvino.runtime as ov
compiled_model = ov.compile_model("model.xml")
#! [auto_compilation]
#! [properties_example]
core = ov.Core()
input_a = ov.opset8.parameter([8])
res = ov.opset8.absolute(input_a)
model = ov.Model(res, [input_a])
compiled = core.compile_model(model, "CPU")
print(model.inputs)
print(model.outputs)
print(compiled.inputs)
print(compiled.outputs)
#! [properties_example]
#! [tensor_basics]
data_float64 = np.ones(shape=(2,8))
tensor = ov.Tensor(data_float64)
assert tensor.element_type == ov.Type.f64
data_int32 = np.ones(shape=(2,8), dtype=np.int32)
tensor = ov.Tensor(data_int32)
assert tensor.element_type == ov.Type.i32
#! [tensor_basics]
#! [tensor_shared_mode]
data_to_share = np.ones(shape=(2,8))
shared_tensor = ov.Tensor(data_to_share, shared_memory=True)
# Editing of the numpy array affects Tensor's data
data_to_share[0][2] = 6.0
assert shared_tensor.data[0][2] == 6.0
# Editing of Tensor's data affects the numpy array
shared_tensor.data[0][2] = 0.6
assert data_to_share[0][2] == 0.6
#! [tensor_shared_mode]
#! [tensor_slice_mode]
data_to_share = np.ones(shape=(2,8))
# Specify slice of memory and the shape
shared_tensor = ov.Tensor(data_to_share[1][:] , shape=ov.Shape([8]))
# Editing of the numpy array affects Tensor's data
data_to_share[1][:] = 2
assert np.array_equal(shared_tensor.data, data_to_share[1][:])
#! [tensor_slice_mode]
infer_request = compiled.create_infer_request()
data = np.random.randint(-5, 3 + 1, size=(8))
#! [passing_numpy_array]
# Passing inputs data in form of a dictionary
infer_request.infer(inputs={0: data})
# Passing inputs data in form of a list
infer_request.infer(inputs=[data])
#! [passing_numpy_array]
#! [getting_results]
# Get output tensor
results = infer_request.get_output_tensor().data
# Get tensor with CompiledModel's output node
results = infer_request.get_tensor(compiled.outputs[0]).data
# Get all results with special helper property
results = list(infer_request.results.values())
#! [getting_results]
#! [sync_infer]
# Simple call to InferRequest
results = infer_request.infer(inputs={0: data})
# Extra feature: calling CompiledModel directly
results = compiled_model(inputs={0: data})
#! [sync_infer]
#! [asyncinferqueue]
core = ov.Core()
# Simple model that adds two inputs together
input_a = ov.opset8.parameter([8])
input_b = ov.opset8.parameter([8])
res = ov.opset8.add(input_a, input_b)
model = ov.Model(res, [input_a, input_b])
compiled = core.compile_model(model, "CPU")
# Number of InferRequests that AsyncInferQueue holds
jobs = 4
infer_queue = ov.AsyncInferQueue(compiled, jobs)
# Create data
data = [np.array([i] * 8, dtype=np.float32) for i in range(jobs)]
# Run all jobs
for i in range(len(data)):
infer_queue.start_async({0: data[i], 1: data[i]})
infer_queue.wait_all()
#! [asyncinferqueue]
#! [asyncinferqueue_access]
results = infer_queue[3].get_output_tensor().data
#! [asyncinferqueue_access]
#! [asyncinferqueue_set_callback]
data_done = [False for _ in range(jobs)]
def f(request, userdata):
print(f"Done! Result: {request.get_output_tensor().data}")
data_done[userdata] = True
infer_queue.set_callback(f)
for i in range(len(data)):
infer_queue.start_async({0: data[i], 1: data[i]}, userdata=i)
infer_queue.wait_all()
assert all(data_done)
#! [asyncinferqueue_set_callback]