Add ONNX DequantizeLinear to MO (#1250)
* Add ONNX DequantizeLinear to MO * Update docs
This commit is contained in:
parent
db176dfc5d
commit
663be787d6
@ -306,7 +306,7 @@ Standard ONNX\* operators:
|
|||||||
| Cosh | No |
|
| Cosh | No |
|
||||||
| Crop | No |
|
| Crop | No |
|
||||||
| CumSum | No |
|
| CumSum | No |
|
||||||
| DequantizeLinear | Only in combination with QuantizeLinear, refer to the desc of the latter |
|
| DequantizeLinear | No |
|
||||||
| DetectionOutput (Intel experimental) | No |
|
| DetectionOutput (Intel experimental) | No |
|
||||||
| Div | No |
|
| Div | No |
|
||||||
| Dropout | Not needed for inference |
|
| Dropout | Not needed for inference |
|
||||||
|
@ -242,6 +242,8 @@ extensions/front/onnx/crop_ext.py
|
|||||||
extensions/front/onnx/cumsum_ext.py
|
extensions/front/onnx/cumsum_ext.py
|
||||||
extensions/front/onnx/deformable_conv_ext.py
|
extensions/front/onnx/deformable_conv_ext.py
|
||||||
extensions/front/onnx/depth_to_space_ext.py
|
extensions/front/onnx/depth_to_space_ext.py
|
||||||
|
extensions/front/onnx/dequantize_linear_ext.py
|
||||||
|
extensions/front/onnx/dequantize_linear_resolver.py
|
||||||
extensions/front/onnx/detection_output.py
|
extensions/front/onnx/detection_output.py
|
||||||
extensions/front/onnx/detectionoutput_ext.py
|
extensions/front/onnx/detectionoutput_ext.py
|
||||||
extensions/front/onnx/dropout_ext.py
|
extensions/front/onnx/dropout_ext.py
|
||||||
@ -594,6 +596,7 @@ extensions/ops/ctc_greedy_decoder.py
|
|||||||
extensions/ops/cumsum.py
|
extensions/ops/cumsum.py
|
||||||
extensions/ops/data_augmentation.py
|
extensions/ops/data_augmentation.py
|
||||||
extensions/ops/depth_to_space.py
|
extensions/ops/depth_to_space.py
|
||||||
|
extensions/ops/dequantize_linear.py
|
||||||
extensions/ops/DetectionOutput.py
|
extensions/ops/DetectionOutput.py
|
||||||
extensions/ops/detectionoutput_onnx.py
|
extensions/ops/detectionoutput_onnx.py
|
||||||
extensions/ops/elementwise.py
|
extensions/ops/elementwise.py
|
||||||
|
@ -0,0 +1,33 @@
|
|||||||
|
"""
|
||||||
|
Copyright (C) 2020 Intel Corporation
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
"""
|
||||||
|
import logging as log
|
||||||
|
|
||||||
|
from extensions.ops.dequantize_linear import DequantizeLinear
|
||||||
|
from mo.front.extractor import FrontExtractorOp
|
||||||
|
from mo.front.onnx.extractors.utils import onnx_attr, get_onnx_opset_version
|
||||||
|
|
||||||
|
|
||||||
|
class DequantizeLinearFrontExtractor(FrontExtractorOp):
|
||||||
|
op = 'DequantizeLinear'
|
||||||
|
enabled = True
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def extract(cls, node):
|
||||||
|
if get_onnx_opset_version(node) >= 13:
|
||||||
|
log.warning('Ignoring "axis" attribute for DequantizeLinear-{} node, inference might be incorrect.'.format(
|
||||||
|
get_onnx_opset_version(node)))
|
||||||
|
DequantizeLinear.update_node_stat(node)
|
||||||
|
return cls.enabled
|
@ -0,0 +1,53 @@
|
|||||||
|
"""
|
||||||
|
Copyright (C) 2020 Intel Corporation
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from extensions.front.onnx.quantize_dequantize_linear import QuantizeDequantizeLinear
|
||||||
|
from extensions.ops.Cast import Cast
|
||||||
|
from extensions.ops.elementwise import Mul, Sub
|
||||||
|
from mo.front.common.replacement import FrontReplacementOp
|
||||||
|
from mo.graph.graph import Graph, Node, rename_nodes
|
||||||
|
from mo.middle.passes.convert_data_type import data_type_str_to_np
|
||||||
|
|
||||||
|
|
||||||
|
class DequantizeLinearResolver(FrontReplacementOp):
|
||||||
|
"""
|
||||||
|
DequantizeLinear can be replace with the following formula: y = (x - x_zero_point) * x_scale
|
||||||
|
"""
|
||||||
|
op = "DequantizeLinear"
|
||||||
|
enabled = True
|
||||||
|
|
||||||
|
def run_after(self):
|
||||||
|
return [QuantizeDequantizeLinear]
|
||||||
|
|
||||||
|
def replace_op(self, graph: Graph, node: Node):
|
||||||
|
node_name = node.soft_get('name', node.id)
|
||||||
|
model_data_type = data_type_str_to_np(graph.graph['cmd_params'].data_type)
|
||||||
|
cast = Cast(graph, {'dst_type': model_data_type, 'name': node_name + '/Cast'}).create_node()
|
||||||
|
node.in_port(0).get_connection().set_destination(cast.in_port(0))
|
||||||
|
mul = Mul(graph, {}).create_node()
|
||||||
|
|
||||||
|
if node.is_in_port_connected(2):
|
||||||
|
sub = Sub(graph, {'name': node_name + '/Sub'}).create_node()
|
||||||
|
cast.out_port(0).connect(sub.in_port(0))
|
||||||
|
node.in_port(2).get_connection().set_destination(sub.in_port(1))
|
||||||
|
sub.out_port(0).connect(mul.in_port(0))
|
||||||
|
else:
|
||||||
|
cast.out_port(0).connect(mul.in_port(0))
|
||||||
|
|
||||||
|
node.in_port(1).get_connection().set_destination(mul.in_port(1))
|
||||||
|
rename_nodes([(node, node_name + '/TBD'), (mul, node_name)])
|
||||||
|
|
||||||
|
return [mul.id]
|
@ -0,0 +1,100 @@
|
|||||||
|
"""
|
||||||
|
Copyright (C) 2020 Intel Corporation
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
from argparse import Namespace
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from extensions.front.onnx.dequantize_linear_resolver import DequantizeLinearResolver
|
||||||
|
from mo.utils.ir_engine.compare_graphs import compare_graphs
|
||||||
|
from mo.utils.unittest.graph import build_graph
|
||||||
|
|
||||||
|
nodes1_attributes = {
|
||||||
|
'input': {'kind': 'op', 'op': 'AnyOp'},
|
||||||
|
'dequantize': {'kind': 'op', 'op': 'DequantizeLinear'},
|
||||||
|
'scale_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'},
|
||||||
|
'zerop_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'},
|
||||||
|
'out': {'kind': 'op', 'op': 'AnyOp'},
|
||||||
|
}
|
||||||
|
|
||||||
|
nodes_ref_attributes = {
|
||||||
|
'input': {'kind': 'op', 'op': 'AnyOp'},
|
||||||
|
'cast': {'kind': 'op', 'op': 'Cast', 'type': 'Convert'},
|
||||||
|
'sub': {'kind': 'op', 'op': 'Sub', 'type': 'Subtract'},
|
||||||
|
'mul': {'kind': 'op', 'op': 'Mul', 'type': 'Multiply'},
|
||||||
|
'scale_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'},
|
||||||
|
'zerop_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'},
|
||||||
|
'out': {'kind': 'op', 'op': 'AnyOp'},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestDequantizeLinearResolver(unittest.TestCase):
|
||||||
|
|
||||||
|
def test_dequantize(self):
|
||||||
|
graph = build_graph(nodes1_attributes,
|
||||||
|
[('input', 'dequantize'),
|
||||||
|
('scale_param_dq', 'dequantize'),
|
||||||
|
('zerop_param_dq', 'dequantize'),
|
||||||
|
('dequantize', 'out'),
|
||||||
|
],
|
||||||
|
{'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)},
|
||||||
|
'zerop_param_dq': {'shape': np.array([]), 'value': np.uint8(0)},
|
||||||
|
}, nodes_with_edges_only=True)
|
||||||
|
graph.graph['cmd_params'] = Namespace(keep_shape_ops=True, data_type='FP32')
|
||||||
|
|
||||||
|
graph_ref = build_graph(nodes_ref_attributes,
|
||||||
|
[('input', 'cast'),
|
||||||
|
('cast', 'sub'),
|
||||||
|
('zerop_param_dq', 'sub'),
|
||||||
|
('sub', 'mul'),
|
||||||
|
('scale_param_dq', 'mul'),
|
||||||
|
('mul', 'out'),
|
||||||
|
],
|
||||||
|
{'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)},
|
||||||
|
'zerop_param_dq': {'shape': np.array([]), 'value': np.uint8(0)}
|
||||||
|
}, nodes_with_edges_only=True)
|
||||||
|
|
||||||
|
graph.stage = 'front'
|
||||||
|
DequantizeLinearResolver().find_and_replace_pattern(graph)
|
||||||
|
|
||||||
|
(flag, resp) = compare_graphs(graph, graph_ref, 'out', check_op_attrs=True)
|
||||||
|
self.assertTrue(flag, resp)
|
||||||
|
|
||||||
|
def test_dequantize_no_zerop(self):
|
||||||
|
graph = build_graph(nodes1_attributes,
|
||||||
|
[('input', 'dequantize'),
|
||||||
|
('scale_param_dq', 'dequantize'),
|
||||||
|
('dequantize', 'out'),
|
||||||
|
],
|
||||||
|
{'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)},
|
||||||
|
}, nodes_with_edges_only=True)
|
||||||
|
graph.graph['cmd_params'] = Namespace(keep_shape_ops=True, data_type='FP32')
|
||||||
|
|
||||||
|
graph_ref = build_graph(nodes_ref_attributes,
|
||||||
|
[('input', 'cast'),
|
||||||
|
('cast', 'mul'),
|
||||||
|
('scale_param_dq', 'mul'),
|
||||||
|
('mul', 'out'),
|
||||||
|
],
|
||||||
|
{'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}
|
||||||
|
}, nodes_with_edges_only=True)
|
||||||
|
|
||||||
|
graph.stage = 'front'
|
||||||
|
DequantizeLinearResolver().find_and_replace_pattern(graph)
|
||||||
|
|
||||||
|
(flag, resp) = compare_graphs(graph, graph_ref, 'out', check_op_attrs=True)
|
||||||
|
self.assertTrue(flag, resp)
|
37
model-optimizer/extensions/ops/dequantize_linear.py
Normal file
37
model-optimizer/extensions/ops/dequantize_linear.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
"""
|
||||||
|
Copyright (C) 2020 Intel Corporation
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from mo.graph.graph import Graph
|
||||||
|
from mo.ops.op import Op
|
||||||
|
|
||||||
|
|
||||||
|
class DequantizeLinear(Op):
|
||||||
|
op = 'DequantizeLinear'
|
||||||
|
enabled = False
|
||||||
|
|
||||||
|
def __init__(self, graph: Graph, attrs: dict):
|
||||||
|
mandatory_props = {
|
||||||
|
'type': None,
|
||||||
|
'op': self.op,
|
||||||
|
'version': None,
|
||||||
|
'infer': None,
|
||||||
|
'out_ports_count': 1,
|
||||||
|
'in_ports_count': 3,
|
||||||
|
}
|
||||||
|
super().__init__(graph, mandatory_props, attrs)
|
||||||
|
|
||||||
|
def supported_attrs(self):
|
||||||
|
return ['axis']
|
Loading…
Reference in New Issue
Block a user